首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   31篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   1篇
  2006年   3篇
  2005年   9篇
  2004年   1篇
  2003年   4篇
  2002年   8篇
  2001年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
1.
高浓度Cd,Pb污染水域中的微生物生态   总被引:1,自引:1,他引:0  
用选择性培养基和滤纸片法研究了Cd、Pb污染水域中的微生物生态分布、对Cd、Pb的抗性及富集力。结果表明,污水中微生物量的变化与Cd、Pb浓度不相关。抗性微生物生物量受环境温度影响较大。微生物对Cd、Pb的抗性是霉菌>酵母和细菌,Pb>Cd。霉菌最高抗Cd、Pb浓度可达2×10~4mg·L~(-1)。酵母和细菌最高抗Cd浓度为5000mg·L~(-1)、Pb浓度为1×10~4mg·L~(-1),抗性微生物对Cd、Pb的富集力与其抗性及Cd、Pb的毒性密切相关。含Cd、Pb污水中的优势菌有欧文氏菌、产碱杆菌、节细菌、假丝酵母、曲霉和枝孢霉。  相似文献   
2.
3.
污染土壤中多环芳烃生物降解的调控研究   总被引:23,自引:6,他引:17  
选用温度、湿度、表面活性剂TW80和CNP比4个因素为调控因子,采用正交法进行周期为150天的实验研究.结果表明,30天后,土壤中PAHs的降解率可达44.5~74.6%,60天后,达70.4~93.7%,降解率的不同与调控条件显著相关.在此期间,降解最佳条件为40℃,湿度25%,CNP比为120101,TW80分别为200~500mg·kg-1.实验结束时,土壤中PAHs的降解率达91.2~99.8%.降解的最佳条件是40℃,湿度15%.经R值判别表明,不同时期各因子对PAHs降解影响有所不同.温度对PAHs降解影响较大,表面活性剂对土壤中PAHs的生物降解有调控作用.  相似文献   
4.
土壤重金属污染对蚯蚓的急性毒性效应研究   总被引:52,自引:9,他引:43  
测定了草甸棕壤条件下 ,Cu、Zn、Pb、Cd单一 /复合污染对蚯蚓的急性致死及亚致死效应 .结果表明 ,Cu、Pb浓度与蚯蚓死亡率显著相关 (α=0 .0 5 ,RCu=0 .86 ,RPb=0 .87) ,Cu浓度与生长抑制率显著相关 (α=0 .0 5 ,RCu=0 .84) ,其他供试重金属浓度与蚯蚓死亡率和生长抑制率相关性不显著 .蚯蚓个体对重金属毒性的耐受程度差别较大 .其毒性阈值 (引起个体蚯蚓死亡浓度 )分别为 :Cu 30 0mg·kg-1,Zn 130 0mg·kg-1,Pb 170 0mg·kg-1,Cd 30 0mg·kg-1.LC50 分别为 :Cu 40 0~ 45 0mg·kg-1,Zn15 0 0~ 190 0mg·kg-1,Pb2 35 0~ 2 40 0mg·kg-1,Cd 90 0mg·kg-1.在Cu、Zn、Pb、Cd单一污染引起 >10 %蚯蚓死亡的浓度下 ,复合污染导致 10 0 %蚯蚓死亡 ,表明复合污染极强的协同效应 .  相似文献   
5.
Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long‐term experimental catchments across Canada and the United States over 5‐year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment's change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of interannual variation in potential ET divided by P (PET/P; dryness index) to interannual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., nonresilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments.  相似文献   
6.
氯苯胁迫对蚕豆幼苗生长和细胞分裂的影响   总被引:12,自引:0,他引:12  
研究了1,2,4-三氯苯(TCB)对蚕豆幼苗生长、根尖细胞分裂及染色体畸变的影响.结果表明,随TCB浓度增加和处理时间延长,蚕豆幼苗根长的生长及根尖细胞有丝分裂指数降低甚至停止.TCB诱发蚕豆根尖细胞有丝分裂过程中染色体数目畸变和结构畸变.50-100μg.g^-1TCB胁迫12-24h,蚕豆根尖染色体的主要损伤形式为c-有丝分裂、染色体桥和不均匀排列,其出现百分率达1.0%--10.3%.300μg.g^-1TCB胁迫12-96h,蚕豆根尖细胞中染色体粘连(S)、S+染色体断裂(S+B)、S+染色体环(S+R)、S+染色体不均匀排列(S+A)及S+染色体桥(S+Be)出现的百分率达47.9%--88.9%,各种类型染色体断裂出现的百分率仅为18.1%--29.6%,说明蚕豆根尖细胞染色体畸变分析可作为TCB土壤污染监测的敏感生物监测指标.  相似文献   
7.
Liu  Wan  Li  Peijun  Zhou  Qixing  Sun  Tieheng  Tai  Peidong  Xu  Huaxia 《中国科学:生命科学英文版》2005,48(1):33-39

The root growth, changes in Superoxide dismutase (SOD, EC 1.15.1.1) activity, malonyldialdehyde (MDA) and total soluble protein level of broadbean (Vicia faba) seedlings were researched at different soil concentrations of chlorobenzene (CB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB). The results showed that root growth of seedlings was interrupted after 5d of 50–200 μg · g−1 TCB treatment. During a 3 d of recovery period, root growth was, however, restored to some extent although there was a delay in returning to the control level. The total soluble protein content in seedlings increased with TCB concentration and duration of exposure. Effect of TCB stress on SOD activity in seedlings displayed a significant dose-effect relationship for 1–5 d of 50–200 μg · g−1 treatment. When broadbean seedlings were placed in clean tap water for 3 d following exposure to 5 d of TCB stress to clear tap water for 3 d, SOD activity at 50 μg · g−1 TCB recovered towards control level (P> 0.05) while a significant increase in SOD activity was observed at 100 and 200 μg · g−1 TCB compared to control (P< 0.05). The experiments also revealed that a significant increase of MDA level in seedlings occurred after 3 and 5 d of 100 and 200 μg · g−1 TCB treatment (P< 0.05 andP< 0.01), and there was a positive correlation between TCB concentration and MDA level. All the above results showed that SOD activity and MDA level of broadbean seedlings might be proposed as the biomarkers for short-term TCB contamination in soil. Compared to TCB, the toxicity of 50−1000 μg · g−1 CB or HCB in soil to broadbean seedlings was not observed after a 3 d exposure.

  相似文献   
8.
9.
The root growth, changes in Superoxide dismutase (SOD, EC 1.15.1.1) activity, malonyldialdehyde (MDA) and total soluble protein level of broadbean (Vicia faba) seedlings were researched at different soil concentrations of chlorobenzene (CB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB). The results showed that root growth of seedlings was interrupted after 5d of 50–200 μg · g?1 TCB treatment. During a 3 d of recovery period, root growth was, however, restored to some extent although there was a delay in returning to the control level. The total soluble protein content in seedlings increased with TCB concentration and duration of exposure. Effect of TCB stress on SOD activity in seedlings displayed a significant dose-effect relationship for 1–5 d of 50–200 μg · g?1 treatment. When broadbean seedlings were placed in clean tap water for 3 d following exposure to 5 d of TCB stress to clear tap water for 3 d, SOD activity at 50 μg · g?1 TCB recovered towards control level (P> 0.05) while a significant increase in SOD activity was observed at 100 and 200 μg · g?1 TCB compared to control (P< 0.05). The experiments also revealed that a significant increase of MDA level in seedlings occurred after 3 and 5 d of 100 and 200 μg · g?1 TCB treatment (P< 0.05 andP< 0.01), and there was a positive correlation between TCB concentration and MDA level. All the above results showed that SOD activity and MDA level of broadbean seedlings might be proposed as the biomarkers for short-term TCB contamination in soil. Compared to TCB, the toxicity of 50?1000 μg · g?1 CB or HCB in soil to broadbean seedlings was not observed after a 3 d exposure.  相似文献   
10.
The root growth, changes in superoxide dismutase (SOD, EC 1.15.1.1) activity, malonyldialdehyde (MDA) and total soluble protein level of broadbean (Vicia faba) seedlings were researched at different soil concentrations of chlorobenzene (CB), 1,2,4-trichlorobenzene (TCB) and hexachlorobenzene (HCB). The results showed that root growth of seedlings was interrupted after 5d of 50-200 μg ·g-1 TCB treatment. During a 3 d of recovery period, root growth was, however, restored to some extent although there was a delay in returning to the control level. The total soluble protein content in seedlings increased with TCB concentration and duration of exposure. Effect of TCB stress on SOD activity in seedlings displayed a significant dose-effect relationship for 1-5 d of 50-200 μg ·g-1 treatment. When broadbean seedlings were placed in clean tap water for 3 d following exposure to 5 d of TCB stress to clear tap water for 3 d, SOD activity at 50 μg ·g-1 TCB recovered towards control level (P>0.05) while a signi  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号