首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   12篇
  2021年   2篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   4篇
  2012年   12篇
  2011年   16篇
  2010年   4篇
  2009年   9篇
  2008年   15篇
  2007年   7篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
排序方式: 共有123条查询结果,搜索用时 328 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
The ability to generate and design antibodies recognizing specific targets has revolutionized the pharmaceutical industry and medical imaging. Engineering antibody therapeutics in some cases requires modifying their constant domains to enable new and altered interactions. Engineering novel specificities into antibody constant domains has proved challenging due to the complexity of inter‐domain interactions. Covarying networks of residues that tend to cluster on the protein surface and near binding sites have been identified in some proteins. However, the underlying role these networks play in the protein resulting in their conservation remains unclear in most cases. Resolving their role is crucial, because residues in these networks are not viable design targets if their role is to maintain the fold of the protein. Conversely, these networks of residues are ideal candidates for manipulating specificity if they are primarily involved in binding, such as the myriad interdomain interactions maintained within antibodies. Here, we identify networks of evolutionarily‐related residues in C‐class antibody domains by evaluating covariation, a measure of propensity with which residue pairs vary dependently during evolution. We computationally test whether mutation of residues in these networks affects stability of the folded antibody domain, determining their viability as design candidates. We find that members of covarying networks cluster at domain‐domain interfaces, and that mutations to these residues are diverse and frequent during evolution, precluding their importance to domain stability. These results indicate that networks of covarying residues exist in antibody domains for functional reasons unrelated to thermodynamic stability, making them ideal targets for antibody design. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers.  相似文献   
4.
Prolyl hydroxylase domain‐containing protein 2 (PHD2), as one of the most important regulators of angiogenesis and metastasis of cancer cells, is a promising target for cancer therapy drug design. Progressive studies imply that abnormality in PHD2 function may be due to misfolding. Therefore, study of the PHD2 unfolding pathway paves the way for a better understanding of the influence of PHD2 mutations and cancer cell metabolites on the protein folding pathway. We study the unfolding of the PHD2 catalytic domain using differential scanning calorimetry (DSC), fluorescence spectroscopy, and discrete molecular dynamics simulations (DMD). Using computational and experimental techniques, we find that PHD2 undergoes four transitions along the thermal unfolding pathway. To illustrate PHD2 unfolding events in atomic detail, we utilize DMD simulations. Analysis of computational results indicates an intermediate species in the PHD2 unfolding pathway that may enhance aggregation propensity, explaining mutation‐independent PHD2 malfunction. Proteins 2016; 84:611–623. © 2016 Wiley Periodicals, Inc.  相似文献   
5.
Prolyl hydroxylase domain 2 containing protein (PHD2) is a key protein in regulation of angiogenesis and metastasis. In normoxic condition, PHD2 triggers the degradation of hypoxia-inducible factor 1 (HIF-1α) that induces the expression of hypoxia response genes. Therefore the correct function of PHD2 would inhibit angiogenesis and consequent metastasis of tumor cells in normoxic condition. PHD2 mutations were reported in some common cancers. However, high levels of HIF-1α protein were observed even in normoxic metastatic tumors with normal expression of wild type PHD2. PHD2 malfunctions due to protein misfolding may be the underlying reason of metastasis and invasion in such cases. In this study, we scrutinize the unfolding pathways of the PHD2 catalytic domain’s possible species and demonstrate the properties of their unfolding states by computational approaches. Our study introduces the possibility of aggregation disaster for the prominent species of PHD2 during its partial unfolding. This may justify PHD2 inability to regulate HIF-1α level in some normoxic tumor types.  相似文献   
6.
Dokholyan NV 《Proteins》2004,54(4):622-628
Selecting a protein sequence that corresponds to a specific three-dimensional protein structure is known as the protein design problem. One principal bottleneck in solving this problem is our lack of knowledge of precise atomic interactions. Using a simple model of amino acid interactions, we determine three crucial factors that are important for solving the protein design problem. Among these factors is the protein alphabet-a set of sequence elements that encodes protein structure. Our model predicts that alphabet size is independent of protein length, suggesting the possibility of designing a protein of arbitrary length with the natural protein alphabet. We also find that protein alphabet size is governed by protein structural properties and the energetic properties of the protein alphabet units. We discover that the usage of average types of amino acid in proteins is less than expected if amino acids were chosen randomly with naturally occurring frequencies. We propose three possible scenarios that account for amino acid underusage in proteins. These scenarios suggest the possibility that amino acids themselves might not constitute the alphabet of natural proteins.  相似文献   
7.
Cu, Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.  相似文献   
8.
Molecular dynamics simulations of folding in an off-lattice protein model reveal a nucleation scenario, in which a few well-defined contacts are formed with high probability in the transition state ensemble of conformations. Their appearance determines folding cooperativity and drives the model protein into its folded conformation. Amino acid residues participating in those contacts may serve as "accelerator pedals" used by molecular evolution to control protein folding rate.  相似文献   
9.
We study the length distribution functions for the 16 possible distinct dimeric tandem repeats in DNA sequences of diverse taxonomic partitions of GenBank (known human and mouse genomes, and complete genomes of Caenorhabditis elegans and yeast). For coding DNA, we find that all 16 distribution functions are exponential. For non-coding DNA, the distribution functions for most of the dimeric repeats have surprisingly long tails, that fit a power-law function. We hypothesize that: (i) the exponential distributions of dimeric repeats in protein coding sequences indicate strong evolutionary pressure against tandem repeat expansion in coding DNA sequences; and (ii) long tails in the distributions of dimers in non-coding DNA may be a result of various mutational mechanisms. These long, non-exponential tails in the distribution of dimeric repeats in non-coding DNA are hypothesized to be due to the higher tolerance of non-coding DNA to mutations. By comparing genomes of various phylogenetic types of organisms, we find that the shapes of the distributions are not universal, but rather depend on the specific class of species and the type of a dimer.  相似文献   
10.
Ryanodine receptors (RyR) are calcium release channels, playing a major role in the regulation of muscular contraction. Mutations in skeletal muscle RyR (RyR1) are associated with congenital diseases such as malignant hyperthermia and central core disease (CCD). The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Previously, we have reported a hypothetical structure of the RyR1 pore-forming region, obtained by homology modeling and supported by mutational scans, electrophysiological measurements, and cryo-electron microscopy. Here, we utilize the expanded model encompassing six transmembrane helices to calculate the RyR1 pore region conductance, to analyze its structural stability, and to hypothesize the mechanism of the Ile4897 CCD-associated mutation. The calculated conductance of the wild-type RyR1 suggests that the proposed pore structure can sustain ion currents measured in single-channel experiments. We observe a stable pore structure on timescales of 0.2 μs, with multiple cations occupying the selectivity filter and cytosolic vestibule, but not the inner chamber. We further suggest that stability of the selectivity filter critically depends on the interactions between the I4897 residue and several hydrophobic residues of the neighboring subunit. Loss of these interactions in the case of polar substitution I4897T results in destabilization of the selectivity filter, a possible cause of the CCD-specific reduced Ca2+ conductance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号