首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   7篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   5篇
  2014年   7篇
  2013年   2篇
  2012年   8篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有94条查询结果,搜索用时 406 毫秒
1.
Fumarate restores to flagella of cytoplasm-free, CheY- containing envelopes of Escherichia coli and Salmonella typhimurium the ability to switch from one direction of rotation to another. To examine the specificity of this effect, we studied flagellar rotation of envelopes which contained, instead of fumarate, one of its analogues. Malate, maleate and succinate promoted switching, but to a lesser extent than fumarate. These observations were made both with wild-type envelopes and with envelopes of a mutant which lacks the enzymes succinate dehydrogenase and fumarase, indicating that the switching-promoting activity of the analogues was not caused by their conversion to fumarate. Aspartate and lactate did not promote switching. Using strains defective in specific enzymes of the tricarboxylic acid cycle and lacking the cytoplasmic chemotaxis proteins as well as some of the chemo-taxis receptors, we demonstrated that, in intact bacteria, unlike the situation in envelopes, fumarate promoted clockwise rotation via its metabolites acetyl phosphate and acetyladenylate, but did not promote switching (presumably because of the presence of cytoplasmic fumarate). All of the results are consistent with the notion that fumarate acts as a switching factor, presumably by lowering the activation energy of switching. Thus fumarate and some of its metabolites may serve as a connection point between the bacterial metabolic state and chemotactic behaviour.  相似文献   
2.
3.
Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers.  相似文献   
4.

Loading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation. However, no research has comprehensively examined the combined influences of collagenases and gelatinases on collagen degradation nor studied the mechanical consequences of biological degradation of collagen fibrils. Such preclinical examinations are required to gain insights into understanding, treating, and preventing degradation-related cartilage pathology. To develop these insights, we use sequential Monte Carlo and molecular dynamics simulations to probe the effect of enzymatic degradation on the structure and mechanics of a single collagen fibril. We find that the mechanical response depends on the ratio of collagenase to gelatinase—not just the amount of lost fibril mass—and we provide a possible mechanism underlying this phenomenon. Overall, by characterizing the combined influences of collagenases and gelatinases on fibril degradation and mechanics at the preclinical research stage, we gain insights that may facilitate the development of targeted interventions to prevent the damage and loss of mechanical integrity that can lead to cartilage pathology.

  相似文献   
5.
6.
7.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号