首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1996年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
The effect of temperature on the maximum specific growth rate and the cell yield was studied during cultivation of two bacterial strains (LPM-4 and Pseudomonas sp. LPM-410) on EDTA under unlimited cell growth conditions in a pH-auxostat. Both strains displayed linear dependence of reciprocal biomass yield against reciprocal specific growth rate, from which the values of rate of substrate expenditure for cell maintenance and the “maximum” yield (i.e., hypothetical yield without cell maintenance processes) were estimated. Analysis of the maximum yield values based on mass–energy balance theory suggested that oxidation of the carboxylic acid side chains of EDTA by a monooxygenase had zero or low energetic efficiency. An Arrhenius equation with different values of Arrhenius parameters within different temperature ranges gave a good fit with the temperature dependence of both growth rate and biomass yield. Specific growth rates of both strains showed a more pronounced temperature dependence than did the cell yields. A possible kinetic mechanism was suggested which might be responsible for the modes of the temperature dependences of specific growth rate and yield that were found. The mechanism is based on a hypothetical key substance governing the metabolic flows, which is formed in a zero-order reaction and destroyed in a first-order reaction, both rate constants depending on temperature according to the Arrhenius law.  相似文献   
2.
Arachidonic acid (ARA, 5,8,1l,14-cis-eicosatetraenoic acid) is widely used in medicine, pharmaceutics, cosmetics, dietary nutrition, agriculture, and other fields. Microbiological production of ARA is of increased interest since the natural sources (pig liver, adrenal glands, and egg-yolk) cannot satisfy its growing requirements. Mechanisms for ARA biosynthesis as well as the regulation of enzymes involved in this process are considered. Review summarizes literature data concerning individual stages of microbiological ARA production, methods for screening of active strains-producers, physiological regulation of ARA synthesis in micromycetes (the effect of growth phase, medium composition, pH, temperature, and aeration), and effective technologies of fermentation and the product recovery. Information on the whole biotechnological process from strain selection to the ARA yield improvement and purification of the end product is presented.  相似文献   
3.
The process of succinic acid (SA) production represents the combination of microbial synthesis of α-ketoglutaric acid from rapeseed oil by yeast Yarrowia lipolytica VKM Y-2412 and subsequent decarboxylation of α-ketoglutaric acid by hydrogen peroxide to SA that leads to the production of 69.0 g l?1 of SA and 1.36 g l?1 of acetic acid. SA was isolated from the culture broth filtrate in a crystalline form. The SA recovery from the culture filtrate has certain difficulties due to the presence of residual triglycerides of rapeseed oil. The effect of different methods of the culture filtrate treatment and various sorption materials on the coagulation of triglycerides was studied, and as a result, the precipitation of residual triglycerides by acetone was chosen. The subsequent isolation procedures involved the decomposition of H2O2 in the filtrate followed by filtrate bleaching and acidification with a mineral acid, evaporation of filtrate, and SA extraction with ethanol from the residue. The purity of crystalline SA isolated from the culture broth filtrate achieved 97.6–100 %. The product yield varied from 62.6 to 71.6 % depending on the acidity of the supernatant.  相似文献   
4.
The fungus Mortierella alpina LPM 301, a producer of arachidonic acid (ARA), was found to possess a unique property of a growth-coupled lipid synthesis. An increase in specific growth rate (μ) from 0.03 to 0.05 h−1 resulted in a two-fold increase in the specific rate of lipid synthesis (milligram lipid (gram per lipid-free biomass) per hour). Under batch cultivation in glucose-containing media with urea or potassium nitrate as nitrogen sources, the ARA content was 46.0 and 60.4% of lipid; 16.4 and 18.8% of dry biomass; and 4.2 and 4.5 g l−1, respectively. Under continuous cultivation of the strain, the productivity of ARA synthesis was 16.2 and 19.2 mg l−1 h−1 at μ=0.05 and 0.03 h−1, respectively.  相似文献   
5.

The basic tendency in the field of plant protection concerns with reducing the use of pesticides and their replacement by environmentally acceptable biological preparations. The most promising approach to plant protection is application of microbial metabolites. In the last years, bactericidal, fungicidal, and nematodocidal activities were revealed for citric, succinic, α-ketoglutaric, palmitoleic, and other organic acids. It was shown that application of carboxylic acids resulted in acceleration of plant development and the yield increase. Of special interest is the use of arachidonic acid in very low concentrations as an inductor (elicitor) of protective functions in plants. The bottleneck in practical applications of these simple, nontoxic, and moderately priced preparations is the absence of industrial production of the mentioned organic acids of required quality since even small contaminations of synthetic preparations decrease their quality and make them dangerous for ecology and toxic for plants, animals, and human. This review gives a general conception on the use of organic acids for plant protection against the most dangerous pathogens and pests, as well as focuses on microbiological processes for production of these microbial metabolites of high quality from available, inexpensive, and renewable substrates.

  相似文献   
6.
A mixture of fatty acid ethyl esters containing arachidonic acid (ARA) at 30% was isolated from Mortierella hygrophila and applied for a foliar treatment of plants. Field experiments revealed that the lipid preparation used at 0.3–0.5 mg per 100 m2 of sown area decreased the development of late blight, common scrab, and rhizoctonoise of potato tubers, cercosporose of sugar beet, and powdery mildew of vine plants by 35–70% as compared to the untreated plants and resulted in a significant increase in the yield.  相似文献   
7.
Bacterial Degradation of EDTA   总被引:1,自引:0,他引:1  
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal–EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal–EDTA complexes (Me–EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 1016 (log K < 16), such as Mg–EDTA, Ca–EDTA, and Mn–EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5–10 h of incubation. Me–EDTA complexes with log K above 16 (Zn–EDTA, Co–EDTA, Pb–EDTA, and Cu–EDTA) were not completely degraded during a 24-h incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd–EDTA or Fe(III)–EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   
8.
Bacterial strain VKM B-2445 is characterized by ethylenediaminetetraacetate (EDTA) requirement for cell growth. This strain could not grow on glucose and organic acids as the sole sources of carbon and energy, but it was able to metabolize these substrates added to EDTA medium. EDTA initiated assimilation of glucose, succinate, fumarate, malate, and citrate and supplied nitrogen for the biomass production from these substrates. Utilization of primarily nongrowth substrates by strain VKM B-2445 started when EDTA was exhausted or at least considerably degraded.  相似文献   
9.
The effect of ethanol, zinc, and iron (Fe2+ and Fe3+) concentration and of oxygen supply on cell growth and the production of citric acid (CA) and isocitric acid (ICA) from ethanol by mutant Yarrowia lipolytica N 1 was studied under continuous cultivation. The following peculiarities of Y. lipolytica metabolism were found: (1) intensive CA production occurred under yeast growth limitation by nitrogen; (2) inhibition of yeast growth by ethanol was accompanied by significant alterations in fatty acid composition of lipids; (3) the production of CA and ICA from ethanol required high concentrations of zinc and iron ions; (4) the intracellular iron concentration determined whether CA or ICA was predominantly formed; (5) the cell's requirement for oxygen depended on the intracellular iron concentration. The events taking place in the production of CA and ICA were evaluated through the activities of enzyme systems involved in the metabolism of ethanol and CA in this strain. Electronic Publication  相似文献   
10.
Oleaginous yeasts (18 strains) were grown in ethanol media under various cultivation conditions (33 biomass samples). It was found that lipid and lipid-free fractions of dry biomass have elemental composition and biomass reductivity very close to values which can be considered as biological constants. The energy content of dry biomass strongly depended on the total lipid content. When the lipid content was 64%, the energy value of dry biomass reached 73% of diesel oil; therefore, oleaginous microorganisms can be a promising source of biodiesel fuel. The approach used in this work makes it possible to determine the energy value of biomass by its elemental composition without application of laborious and expensive calorimetric measurements of combustion heats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号