首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel strain of bacteria (LPM-4) characterized by a unique EDTA requirement for cell growth was isolated. Suspensions of washed cells of strain LPM-4 degraded EDTA complexes with Ba2+, Mg2+, Ca2+, and Mn2+ at constant rates ( 0.310 ± 0.486 mmol EDTA/(g h)) and Zn-EDTA at an initial rate of 0.137 ± 0.016 mmol EDTA/(g h). The temperature optima for cell growth and EDTA degradation were determined under pH-auxostat cultivation. As compared with the known EDTA-degrading bacteria, strain LPM-4 exhibited a higher specific growth rate (0.095? 1) and lower mass cell yield (0.219 g cells/g EDTA), which is promising for its practical applications for EDTA removal in wastewater treatment plants.  相似文献   

2.
A novel strain of bacteria (LPM-4) was isolated that is characterized by a unique EDTA requirement for cell growth. Suspensions of washed cells of strain LPM-4 degrated EDTA complexes with Ba2+, Mg 2+, Ca2+, and Mn2+ at constant rates (0.310-0.486 mmol EDTA/(g h)) and Zn-EDTA at an initial rate of 0.137 +/- 0.016 mmol EDTA/(g h). The temperature optima for cell growth and EDTA degradation were determined under pH-auxostat cultivation. As compared with the known EDTA-degrating bacteria, strain LPM-4 exhibited a higher specific growth rate (0.095 h(-1)) and lower mass cell yield (0.219 g cells/g EDTA) that is promising for its practical applications for EDTA removal in wastewater treatment plants.  相似文献   

3.
Two photosynthetic algal cultures, one Chlorella vulgaris, and the other a Chlorogonium sp., were cultured under light limitations in chemostats. The effects of growth temperature on their energy yield and maintenance energy requirement were studied. It was observed that a lowering in temperature resulted in a lower maximum growth yield from the light energy, Y(G). This was attributed to two reasons. First, at low temperatures there was a change in the algal cell composition with more energy being expended to synthesize a higher biomass protein content. Secondly, at low temperatures, a cyanide-resistant respiratory pathway became operative which led to a decrease in the number of ATP being generated. The maintenance energy coefficient was a function of temperature increasing with decreasing temperature. This might reflect energy wastage by the cell at low temperatures. The maximum specific growth rate dropped with decreasing temperature, and can be described by an Arrhenius type rate-temperature model up to the optimal temperature for growth; i.e., activation energy remained constant.  相似文献   

4.
The Arrhenius Law, which was originally proposed to describe the temperature dependence of the specific reaction rate constant in chemical reactions, does not adequately describe the effect of temperature on bacterial growth. Microbiologists have attempted to apply a modified version of this law to bacterial growth by replacing the reaction rate constant by the growth rate constant, but the modified law relationship fits data poorly, as graphs of the logarithm of the growth rate constant against reciprocal absolute temperature result in curves rather than straight lines. Instead, a linear relationship between in square root of growth rate constant (r) and temperature (T), namely, square root = b (T - T0), where b is the regression coefficient and T0 is a hypothetical temperature which is an intrinsic property of the organism, is proposed and found to apply to the growth of a wide range of bacteria. The relationship is also applicable to nucleotide breakdown and to the growth of yeast and molds.  相似文献   

5.
The obligate destructor of ethylene diamine tetraacetate—a culture of Chelativorans oligotrophicus LPM-4—did not grow on a medium with glucose, but it was good to use it under cultivation on a mixture with EDTA after considerable decrease of the EDTA concentration in the medium (two-phase growth). Strong inhibition of hexokinase and glucose 6-phosphate dehydrogenase in cell exracts 4 mM EDTA was revealed. Using EDTA, cells accumulated polyphosphates whose rate decreased during glucose utilization phase. High activities of polyphosphate biosynthesis ferments (adenylat kinase and polyphosphate kinase) were distinguished during the first phase of the cultivation; considerable decrease of them and increase of polyphosphate glucokinase were found during the second phase of the cultivation. This points to the possible participating of polyphosphates in glucose metabolism as a supplementary energy source.  相似文献   

6.
The influence of temperature on yield, maintenance rate, growth rate, and conversion of calories to biomass was studied with Pseudomonas fluorescens grown in a chemostat. Maintenance and growth rate are influenced linearly with temperature. Both rates increased with increasing temperature and gave linear Arrhenius plots over a limited range. Cells harvested during the steady-state at each temperature were burned in a microcalorimeter. The number of kilocalories per gram (dry weight) of organism was not influenced significantly by the temperature during growth, indicating that the conversion of substrate calories into biomass is apparently regulated in the range of temperature studied.  相似文献   

7.
The influence of temperature on the conversion of glucose into cell material and into energy for maintenance was determined for Pseudomonas fluorescens by a steady-state turbidity method and by a substrate utilization method. Conversion of glucose into cell material was measured as yield; conversion of glucose into energy for maintenance was measured as specific maintenance, the minimum dilution rate in continuous culture below which a steady state is not possible. The values obtained by the two methods were nearly identical; with both, the yield and specific maintenance decreased with decreasing temperature. The specific maintenance consumption rate (milligrams of glucose taken up per milligram of cell dry weight per hour at zero growth) was also calculated by the substrate utilization method and found to decrease with decreasing temperature. However, the amount of glucose consumed per generation for maintenance increased with decreasing temperature. This increased glucose consumption for maintenance may provide a partial explanation for the decrease in yield at low temperatures. Small amounts of glucose were also converted into pigment at all temperatures tested, with the greatest amount formed at 20 C.  相似文献   

8.
The biomass yield on light energy of Dunaliella tertiolecta and Chlorella sorokiniana was investigated in a 1.25- and 2.15-cm light path panel photobioreactor at constant ingoing photon flux density (930 μmol photons m−2 s−1). At the optimal combination of biomass density and dilution rate, equal biomass yields on light energy were observed for both light paths for both microalgae. The observed biomass yield on light energy appeared to be based on a constant intrinsic biomass yield and a constant maintenance energy requirement per gram biomass. Using the model of Pirt (New Phytol 102:3–37, 1986), a biomass yield on light energy of 0.78 and 0.75 g mol photons−1 and a maintenance requirement of 0.0133 and 0.0068 mol photons g−1 h−1 were found for D. tertiolecta and C. sorokiniana, respectively. The observed yield decreases steeply at low light supply rates, and according to this model, this is related to the increase of the amount of useable light energy diverted to biomass maintenance. With this study, we demonstrated that the observed biomass yield on light in short light path bioreactors at high biomass densities decreases because maintenance requirements are relatively high at these conditions. All our experimental data for the two strains tested could be described by the physiological models of Pirt (New Phytol 102:3–37, 1986). Consequently, for the design of a photobioreactor, we should maintain a relatively high specific light supply rate. A process with high biomass densities and high yields at high light intensities can only be obtained in short light path photobioreactors.  相似文献   

9.
The specific oxygen uptake rate (q(O)2, respiration rate) of Bacillus thuringiensis subsp. kurstaki HD-1 was very high at inoculation and was found to decrease essentially monotonically throughout both vegetative growth phase and transition phase under different batch culture conditions. Average q(O)2 values decreased from 8-10 mmol/g h at 1 h after inoculation to less than 2 mmol/g h by the time growth ended. The results are shown to be consistent with the few previous reports on q(O)2 in B. thuringiensis in the literature but also novel in that this pattern of monotonic decline has not been described previously. Both pH control and EDTA in low concentration shortened the vegetative growth phase and reduced the 10 h biomass concentration. Using plots of q(O)2 versus specific growth rate, mu, biomass yield based on the oxygen used for growth, was calculated for transition phase to be 0.041-0.047 g/mmol, consistent with literature values. The same plot also showed that the presence of EDTA resulted in an atypical q(O)2-mu trajectory and apparently much higher biomass yield from the oxygen consumed.  相似文献   

10.
The fermentation kinetics of Lactobacillus plantarum were studied in a specially designed broth formulated from commercially available, dehydrated components (yeast extract, trypticase, ammonium sulfate) in batch and continuous culture. During batch growth in the absence of malic acid, the specific growth rate was 0.20 h–1. Malic acid in the medium, at 2 mM or 10 mM, increased the specific growth rate of L. plantarum to 0.34 h–1. An increase in the maximum cell yield due to malic acid also was observed. Malic acid in the medium (12 mM) reduced the non-growth-associated (maintenance energy) coefficient and increased the biomass yield in continuous culture, based on calculations from the Luedeking and Piret model. The biomass yield coefficient was estimated as 27.4 mg or 34.3 mg cells mmol–1 hexose in the absence or presence of malic acid, respectively. The maintenance coefficient was estimated as 3.5 mmol or 1.5 mmol hexose mg–1 cell h–1 in the absence or presence of malic acid. These results clearly demonstrate the energy-sparing effect of malic acid on the growth- and non-growth-associated energy requirements for L. plantarum. The quantitative energy-sparing effect of malic acid on L. plantarum has heretofore not been reported, to our knowledge.  相似文献   

11.
The influence of glucose concentration in nutrient media on the specific growth rate and biomass yield in the course of continuous fermentation ofSaccharomyces cerevisiae was investigated. An increase of glucose content in media decreased the specific growth rate and the biomass yield. Glucose concentration had significant effects on protein and phosphate contents of cells. However, an increased glucose concentration increased the fermentative power ofS. cerevisiae (SJA-method). An increase of the dilution rate decreased the cell concentration in the fermentor. Specific growth rate approached the values of the dilution rate. The best agreement has been obtained at a dilution rate of 0.20/h. This dilution rate proved to be most convenient for the investigated microorganism and cultivation conditions (media composition, pH, aeration intensity and temperature). Biomass yield proved to be decreased by an increase of the dilution rate.  相似文献   

12.
Temperature profiles (range 20–33 °C) were obtained for growth and exopolysaccharide (EPS) biosynthesis of the microalga Botryococcus braunii strain UC 58 under photoautotrophic conditions. The maximum temperature for growth was 32 °C and the temperature dependence of the specific growth rate was described by the Hinshelwood equation based on the Arrhenius relationship. The optimal range of temperatures for growth and extracellular EPS synthesis (25–30 °C) concurred and production of 4.5–5 g l−1 of EPS was obtained routinely, leading to high broth viscosities. Below 23 °C EPS biosynthesis was negligible, although the specific growth rate maintained high values. At supraoptimal temperatures EPS biosynthesis decreased, accompanying the increase in doubling time. The polymers formed at temperatures within the optimal range for production, when dissolved in water, produced solutions (2 gl−1) with the highest viscosity, suggesting that their molecular weight showed the highest values. The degree of polymerization of the EPS synthesized at suboptimal and supraoptimal temperatures was significantly below the values within the optimal range.  相似文献   

13.
Various organic compounds were assessed as potential substrates for single cell protein production. Substrate evaluation was based on the costs associated with the substrate, oxygen, and heat yield coefficients: Ysub, Yo, and Ykcal, respectively. Yo, and Ykcal, were calculated from experimental values of Ysub, and from the elemental composition of bacterial cells. The dependence of the yield coefficients on the specific growth rate (μ) and maintenance coefficient (m) also was assessed. The analysis disclosed that m caused two- to threefold variations in the yield coefficients as μ was increased from 10% to 100% of μmax. The effect of different m values at constant specific growth rates also was determined. The value of m had a significant effect on the yield coefficients even at high specific growth rates. Assignment of cost factors to the yield coefficients provided an estimation of the impact m and μ on biomass production costs.  相似文献   

14.
Analysing temperature response of decomposition of organic matter   总被引:5,自引:0,他引:5  
In order to analyse temperature effects on decomposition of organic matter, we tested the following hypothesis: Can an Arrhenius type of equation with constant parameter values for the temperature response of decomposer growth rate adequately describe decomposition of organic matter or must some additional properties be made functions of temperature? Possible temperature effects were analysed by aggregating data in different ways from an experiment with 14C‐labelled wheat material incubated in the laboratory at different temperatures and with soil materials collected from seven coniferous forest stands in Europe. Our analysis shows that it is possible to let all the temperature dependence reside in the decomposer growth rate. The analysis also supports the use of an Arrhenius type of equation for the temperature response of decomposer growth rate but with the parameters specific for each soil, or at least a distinction between organic and mineral horizons seems necessary.  相似文献   

15.
Acetobacter aceti have been grown on ethanol under inhibitory conditions created by high concentrations of phenol. A defined medium with no vitamin or amino acid supplements has been used such that ethanol was the sole carbon substrate. The culture temperature was maintained at 30 °C while the pH was manually controlled to fall within the range 4.5–6.0 during ethanol consumption. Growth on ethanol at a few thousand milligrams per litre (below the known inhibitory level) resulted in a maximum specific growth rate of 0.16 h−1 with a 95% yield of acetic acid, followed immediately by acetic acid consumption at a growth rate of 0.037 h−1. Phenol was found to inhibit growth by decreasing both the specific growth rate and the biomass yield during ethanol consumption. On the other hand, the yield of acetic acid during ethanol consumption and the yield of biomass during acetic acid consumption remained constant, independent of phenol inhibition. A model is presented and is shown to represent the phenol-inhibited growth behaviour of A. aceti during both ethanol and acetic acid consumption. Received: 6 November 1998 / Received revision: 8 February 1999 / Accepted: 12 February 1999  相似文献   

16.
Acinetobacter calcoaceticus was grown on ethanol in a chemostat as a model system for single-cell protein production. The substrate yield coefficient (Y(s), grams of biomass/gram of ethanol), protein yield coefficient (Y(p), grams of protein/gram of ethanol), and biomass composition were measured as a function of the specific growth rate. Nucleic acid, protein, Y(p), and Y(s) all increased at higher growth rates. Although protein content increased only 14% (from 53 to 67%), Y(p) almost doubled over the same range of growth rates. The increase in Y(p) was due to the higher protein content of the biomass and to higher values of Y(s). The higher values of Y(s) were attributed to maintenance metabolism, and the value of the maintenance coefficient was found to be 0.11 g of ethanol per g of cell per h. When A. calcoaceticus was cultivated under a phosphorus limitation protein content, Y(p) and Y(s) were lower than in carbon-limited cultures. It was concluded that a single-cell protein fermentation using A. calcoaceticus should be operated at a high growth rate under ethanol-limiting conditions in order to maximize both the protein content of the biomass and the amount of biomass and/or protein made from the substrate.  相似文献   

17.
Comparison of the equations that describe the relationship between the maximum cell yield coefficient, the maintenance coefficient, and the specific growth rate at steady-state conditions revealed that the equations used for axenic cultures are congruent with those commonly used for mixed-culture system such as activated sludge. A unified basis was proposed. The expression of the yield and maintenance coefficients in carbon units according to the unified basis permitted one to evaluate literature data on both axenic and mixed-culture systems. From this it appears that the maximum cell yield ranges from 0.50–0.80 (mg biomass carbon formed/mg substrate carbon used) for both axenic and mixed systems. However, the maintenance coefficient (mg substrate C/mg biomass C·hr) for the axenic cultures was between 0.010 and 0.100, but for activated sludge communities it was between 0.001 and 0.010. Microorganisms were isolated from sludge communities with these apparently low maintenance requirements and grown axenilly. Their maintenance coefficients but not their maximum yield coefficients decreased with decreasing specific growth rates. The consequences of this finding with regard to species selection in mixed-culture systems and the concept of cellular maintenance requirement are discussed.  相似文献   

18.
Three bacterial (Pedobacter heparinus, Pedobacter piscium, Pedobacter cryoconitis) and three yeast strains (Saccharomyces cerevisiae, Leucosporidiella creatinivora, Rhodotorula glacialis) of different thermal classes (mesophiles and psychrophiles) were tested for the effect of temperature on a range of growth parameters, including optical density, viable cell numbers, and cell dry mass, in order to determine the temperature conditions under which maximum biomass formation is obtained. Maximum values of growth parameters obtained at the stationary growth phase of the strains were used for statistical calculation. Temperature had a significant (≤ 0.05) effect on all growth parameters for each strain; correlations between the growth parameters were significant (≤ 0.05–0.01). The maximum growth temperature or the temperature at which microbial growth was fastest was in no case the temperature at which the investigated strains produced the highest amount of biomass. All tested psychrophilic bacteria and yeast strains produced highest amounts of cells (as calculated per mg cell dry mass or per OD600 unit) at 1°C, while cell numbers of mesophiles were highest at 20°C. Thus, cultivation temperatures close to the maximum growth temperature are not appropriate for studying psychrophiles.  相似文献   

19.
Paracoccus denitrificans and Bacillus licheniformis were grown in a carbon- and energy source-limited recycling fermentor with 100% biomass feedback. Experimental data for biomass accumulation and product formation as well as rates of carbon dioxide evolution and oxygen consumption were used in a parameter optimization procedure. This procedure was applied on a model which describes biomass growth as a linear function of the substrate consumption rate and the rate of product formation as a linear function of the biomass growth rate. The fitting procedure yielded two growth domains for P. denitrificans. In the first domain the values for the maximal growth yield and the maintenance coefficient were identical to those found in a series of chemostat experiments. The second domain could be described best with linear biomass increase, which is equal to a constant growth yield. Experimental data of a protease producing B. licheniformis also yielded two growth domains via the fitting procedure. Again, in the first domain, maximal growth yield and maintenance requirements were not significantly different from those derived from a series of chemostat experiments. Domain 2 behaviour was different from that observed with P. denitrificans. Product formation halts and more glucose becomes available for biomass formation, and consequently the specific growth rate increases in the shift from domain 1 to 2. It is concluded that for many industrial production processes, it is important to select organisms on the basis of a low maintenance coefficient and a high basic production of the desired product. It seems less important that the maximal production becomes optimized, which is the basis of most selection procedures.  相似文献   

20.
The effective means of microbial culture monitoring is the measurement of low-inertial parameters (respiration rate, rates of supply of alkali for pH maintenance and the limiting substrate) and utilization of computer on line with fermenter for recalculation of these rates into the instant values of mass and energy cell yields, specific rates of cell growth and substrate and oxygen consumption, using the method of mass-energy balance. In this paper, the equations of mass-energy balance are presented both in general form and in the form of numerical algorythms for computer programming. The installation for automation of microbial cultivation experiment is described. Experimental data are presented which indicate the effectiveness of the method of indirect measurement of cell biomass yield and specific rates of physiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号