首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   4篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   9篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有114条查询结果,搜索用时 234 毫秒
1.
2.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
3.
4.

Background  

In addition to known protein-coding genes, large amounts of apparently non-coding sequence are conserved between the human and mouse genomes. It seems reasonable to assume that these conserved regions are more likely to contain functional elements than less-conserved portions of the genome.  相似文献   
5.
To select a Saccharomyces cerevisiae reference strain amenable to experimental techniques used in (molecular) genetic, physiological and biochemical engineering research, a variety of properties were studied in four diploid, prototrophic laboratory strains. The following parameters were investigated: 1) maximum specific growth rate in shake-flask cultures; 2) biomass yields on glucose during growth on defined media in batch cultures and steady-state chemostat cultures under controlled conditions with respect to pH and dissolved oxygen concentration; 3) the critical specific growth rate above which aerobic fermentation becomes apparent in glucose-limited accelerostat cultures; 4) sporulation and mating efficiency; and 5) transformation efficiency via the lithium-acetate, bicine, and electroporation methods. On the basis of physiological as well as genetic properties, strains from the CEN.PK family were selected as a platform for cell-factory research on the stoichiometry and kinetics of growth and product formation.  相似文献   
6.
Regulation of fermentative capacity was studied in chemostat cultures of two Saccharomyces cerevisiae strains: the laboratory strain CEN.PK113-7D and the industrial bakers’ yeast strain DS28911. The two strains were cultivated at a fixed dilution rate of 0.10 h−1 under various nutrient limitation regimes: aerobic and anaerobic glucose limitation, aerobic and anaerobic nitrogen limitation on glucose, and aerobic ethanol limitation. Also the effect of specific growth rate on fermentative capacity was compared in glucose-limited, aerobic cultures grown at dilution rates between 0.05 h−1 and 0.40 h−1. Biomass yields and metabolite formation patterns were identical for the two strains under all cultivation conditions tested. However, the way in which environmental conditions affected fermentative capacity (assayed off-line as ethanol production rate under anaerobic conditions) differed for the two strains. A different regulation of fermentative capacity in the two strains was also evident from the levels of the glycolytic enzymes, as determined by in vitro enzyme assays. With the exception of phosphofructokinase and pyruvate decarboxylase in the industrial strain, no clear-cut correlation between the activities of glycolytic enzymes and the fermentative capacity was found. These results emphasise the need for controlled cultivation conditions in studies on metabolic regulation in S. cerevisiae and demonstrate that conclusions from physiological studies cannot necessarily be extrapolated from one S. cerevisiae strain to the other.  相似文献   
7.
8.
HIV-1 integrase is one of three enzymes encoded by the HIV genome and is essential for viral replication, and HIV-1 IN inhibitors have emerged as a new promising class of therapeutics. Recently, we reported the discovery of azaindole hydroxamic acids that were potent inhibitors of the HIV-1 IN enzyme. N-Methyl hydroxamic acids were stable against oxidative metabolism, however were cleared rapidly through phase 2 glucuronidation pathways. We were able to introduce polar groups at the β-position of the azaindole core thereby altering physical properties by lowering calculated log D values (c Log D) which resulted in attenuated clearance rates in human hepatocytes. Pharmacokinetic data in dog for representative compounds demonstrated moderate oral bioavailability and reasonable half-lives. These ends were accomplished without a large negative impact on enzymatic and antiviral activity, thus suggesting opportunities to alter clearance parameters in future series.  相似文献   
9.
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.  相似文献   
10.
Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L?1), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H2 production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4?±?0.1 molH2?mol?1 glycerol consumed) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H2 production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号