首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   3篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1999年   9篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有89条查询结果,搜索用时 164 毫秒
1.
In isolated rat adipocytes, epinephrine rapidly stimulates the transport of long chain fatty acid across the plasma membrane. At a concentration of unbound oleate of 0.1 microM ([fatty acid]/[albumin] = 1) and 5 min exposure to the hormone, the minimal effective concentration of epinephrine is 0.03 and the optimal concentration 0.3 microM (0.01 and 0.1 microgram/ml). The stimulated rates are 5-10-fold the basal rate of influx or efflux. The hormone effect is on the transport process specifically as shown by isolation of the product of transport in either direction as unesterified fatty acid and inhibition by the transport inhibitors phloretin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. This effect of epinephrine on transport coordinates physiologically with lipase activation to bring about fatty acid release from adipose tissue.  相似文献   
2.
The ontogeny of glutamine uptake by jejunal basolateral membrane vesicles (BLMV) was studied in suckling and weanling rats and the results were compared with adult rats. Glutamine uptake was found to represent a transport into an osmotically active space and not mere binding to the membrane surface. Temperature dependency indicated a carrier-mediated process with optimal pH of 7.0. Transport of glutamine was Na+ (out greater than in) gradient dependent with a distinct "overshoot" phenomenon. The magnitude of the overshoot was higher in suckling compared with weanling rats. The uptake kinetics and inhibition profile indicated the existence of two major transport pathways. A Na(+)-dependent system correlated with System A showed tolerance to System N and System ASC substrates, and a Na(+)-independent system similar to the classical L system that favors leucine and BCH. The Vmax for the Na(+)-dependent system was higher in suckling compared with weanling and adult rats. The Vmax for the Na(+)-dependent system was 0.86 +/- 0.17, 0.64 +/- 0.8, and 0.41 +/- 0.9 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. The Vmax for the Na(+)-independent system was 0.68 +/- 0.08, 0.50 +/- 0.03, and 0.24 +/- 0.03 nmol.mg protein-1.10 sec-1 for suckling, weanling, and adult rats, respectively. We conclude that glutamine uptake undergoes developmental changes consistent with more activity and/or number of glutamine transporters during periods of active cellular proliferation and differentiation.  相似文献   
3.
Summary We recently reported (Harmon et al., J. Membrane Biol. 124:261–268, 1991) that sulfo-N-succinimidyl derivatives of long-chain fatty acids (SS-FA) specifically inhibited transport of oleate by rat adipocytes. These compounds bound to an 85–90 kD membrane protein which was also labeled by another inhibitor of FA transport [3H]DIDS (4,4-diisothiocyanostilbene-2-2-sulfonate). These results indicated that the protein was a strong candidate as the transporter for long-chain fatty acids. In this report we determined that the apparent size of the protein is 88 kD and its isoelectric point is 6.9. We used [3H]SS-oleate (SSO), which specifically labels the 88-kD protein, to isolate it from rat adipocyte plasma membranes. Identification of 15 amino acids at the N-terminus region revealed strong sequence homology with two previously described membrane glycoproteins: CD36, a ubiquitous protein originally identified in platelets and PAS IV, a protein that is enriched in the apical membranes of lipidsecreting mammary cells during lactation. Antibody against PAS IV cross-reacted with the adipocyte protein. This, together with the N-terminal sequence homology, suggested that the adipocyte protein belongs to a family of related intrinsic membrane proteins which include CD36 and PAS IV.  相似文献   
4.
Studies of fatty acid (FA) esterification by adipocytes have led to conflicting views with respect to how the process is regulated by norepinephrine (NE). It remains unclear whether NE directly modulates the pathway or whether its effects are indirect and reflect its well-known action to activate lipolysis. Changes in lipolysis can complicate estimation of esterification rates by altering both medium FA and the hydrolysis of newly formed FA esters. In this report, we describe an experimental approach that determined the effect of NE on FA esterification, amidst the complications introduced by activation of lipolysis. Esterification rates were estimated from the simultaneous incorporations (0.1-60 min) of [14C]glucose and [3H]oleate into diglyceride (DG), phospholipid (PL), and triglyceride (TG). Saturation kinetics of incorporation rates, with respect to FA, and more specifically to unbound or albumin-free FA (ubFA), were determined in both basal and NE-treated cells. To obtain true estimates of ester synthesis, incorporation rates were adjusted for label loss from breakdown of labeled esters. Our findings were: 1) In basal versus NE-treated cells, [3H]oleate, on its pathway to esterification, was diluted, respectively, by 2 and 50% of measured cell FA, and the diluting FA appeared derived from lipolysis. 2) Syntheses of PL, DG, and TG, estimated from incorporation of [14C]glucose, saturated at low ubFA. The Km for TG synthesis (0.06 microM) was within the physiological range of ubFA which meant that changes in plasma FA will modulate TG synthesis. PL synthesis, on the other hand (Km less than 0.01 microM), would be largely saturated under physiological conditions. 3) NE treatment increased the molar ratio of FA to albumin in the medium an average 8-fold and ubFA about 87-fold. In addition, NE accelerated hydrolysis of labeled PL and DG. Adjusting incorporation rates for these changes indicated that NE does not directly regulate glyceride synthesis. The assays described should allow estimation of glycerolipid synthesis under various metabolic or disease states and will distinguish direct effects from those reflecting changes in FA concentration or in hydrolysis of labeled FA esters.  相似文献   
5.
Glutamine metabolism in the liver is essential for gluconeogenesis and ureagenesis. During the suckling period there is high hepatic protein accretion and the portal vein glutamine concentration is twice that in the adult, whereas hepatic vein glutamine concentration is similar between adult and suckling rats. Therefore, we hypothesized that glutamine uptake by the liver could be greater in the suckling period compared to the adult period. The present studies were, therefore, designed to investigate the transport of glutamine by plasma membranes of rat liver during maturation (suckling--2-week old, weanling--3-week old and adult--12-week old). Glutamine uptake by the plasma membranes of the liver represented transport into an osmotically sensitive space in all age groups. Inwardly directed Na+ gradient resulted in an "overshoot" phenomenon compared to K+ gradient. The magnitude of the overshoot was greater in suckling rats plasma membranes compared to adult membranes. Glutamine uptake under Na+ gradient was electrogenic and maximal at pH 7.5, whereas uptake under K+ gradient was electroneutral. Glutamine uptake with various concentrations of glutamine under Na+ gradient was saturable in all age groups with a Vmax of 1.5 +/- 0.1, 0.7 +/- 0.1 and 0.5 +/- 0.06 nmoles/mg protein/10 seconds in suckling, weanling and adult rats, respectively (P < 0.01). Km values were 0.6 +/- 0.1, 0.5 +/- 0.1 and 0.5 +/- 0.1 mM respectively. Vmax for Na(+)-independent glutamine uptake were 0.6 +/- 0.1, 0.55 +/- 0.07 and 0.54 +/- 0.06 nmoles/mg protein with Km values of 0.54 +/- 0.2, 0. +/- 0.1 and 0.5 +/- 0.2 mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
6.
We have previously shown that CD36 is a membrane protein that facilitates long chain fatty acid (FA) transport by muscle tissues. We also documented the significant impact of muscle CD36 expression on heart function, skeletal muscle insulin sensitivity as well as on overall metabolism. To identify a comprehensive set of genes that are differentially regulated by CD36 expression in the heart, we used two microarray technologies (Affymetrix and Agilent) to compare gene expression in heart tissues from CD36 KnocK-Out (KO-CD36) versus wild type (WT-CD36) mice. The obtained results using the two technologies were similar with around 35 genes differentially expressed using both technologies. Absence of CD36 led to down-regulation of the expression of three groups of genes involved in pathways of FA metabolism, angiogenesis/apoptosis and structure. These data are consistent with the fact that the CD36 protein binds FA and thrombospondin 1 invoved respectively in lipid metabolism and anti-angiogenic activities. In conclusion, our findings led to validate our data analysis workflow and identify specific pathways, possibly underlying the phenotypic abnormalities in CD36 Knock -Out hearts.  相似文献   
7.
Pioglitazone, like other thiazolidinediones, is an insulin-sensitizing agent that activates the peroxisome proliferator-activated receptor gamma and influences the expression of multiple genes involved in carbohydrate and lipid metabolism. However, it is unknown which of these many target genes play primary roles in determining the antidiabetic and hypolipidemic effects of thiazolidinediones. To specifically investigate the role of the Cd36 fatty acid transporter gene in the insulin-sensitizing actions of thiazolidinediones, we studied the metabolic effects of pioglitazone in spontaneously hypertensive rats (SHR) that harbor a deletion mutation in Cd36 in comparison to congenic and transgenic strains of SHR that express wild-type Cd36. In congenic and transgenic SHR with wild-type Cd36, administration of pioglitazone was associated with significantly lower circulating levels of fatty acids, triglycerides, and insulin as well as lower hepatic triglyceride levels and epididymal fat pad weights than in SHR harboring mutant Cd36. Additionally, insulin-stimulated glucose oxidation in isolated soleus muscle was significantly augmented in pioglitazone-fed rats with wild-type Cd36 versus those with mutant Cd36. The Cd36 genotype had no effect on pioglitazone-induced changes in blood pressure. These findings provide direct pharmacogenetic evidence that in the SHR model, Cd36 is a key determinant of the insulin-sensitizing actions of a thiazolidinedione ligand of peroxisome proliferator-activated receptor gamma.  相似文献   
8.
LPS administration and hemorrhage are frequently used models for the in vivo study of the stress response. Both challenges stimulate cytokine production as well as activate opiate and neuro-endocrine pathways; which in turn modulate the inflammatory process. Differences in the magnitude and tissue specificity of the proinflammatory cytokine and neuro-hormonal responses to these stressors are not well established. We contrasted the tissue specificity and magnitude of the increase in circulating and tissue cytokine (TNF-alpha, IL-1alpha and IL-1beta) content in response to either fixed-pressure hemorrhage (approximately 40 mm Hg) followed by fluid resuscitation (HEM) or lipopolysaccharide (LPS; 100 microg/100 g BW) administration. LPS and HEM elevated circulating levels of TNF-alpha, while neither stress altered circulating IL-1-alpha and IL-beta. LPS-induced increases in TNF-alpha content were greater than those elicited by HEM in all tissues studied except for the lung, where both stressors produced similar increases. Tissue (lung, spleen and heart) content of IL-1alpha was increased by HEM but was not affected by LPS. Tissue (lung, spleen, and heart) content of IL-1beta was increased by LPS but was not affected by HEM. HEM produced greater increases than LPS in epinephrine (16- vs. 4-fold) and norepinephrine (4-fold vs. 60%) levels and similar elevations in beta-endorphin. LPS produced greater elevation in corticosterone levels (2-fold) than HEM (50%). These results suggest differential tissue cytokine modulation to HEM and LPS, both with respect to target tissue and cytokine type. The hormonal milieu to HEM is characterized by marked catecholaminergic and moderate glucocorticoid while that of LPS is characterized by marked glucocorticoid with moderate catecholaminergic influence.  相似文献   
9.
Obesity is associated with increased markers of oxidative stress. We examined whether oxidative stress is reduced within the first week after Roux‐en‐Y gastric bypass (RYGB) surgery and could be related to changes in adipose tissue depots. The reactive oxygen species (ROS) marker 8‐iso‐prostaglandin F2α (8‐iso‐PGF2α) and activity of antioxidant glutathione peroxidases (GPX) in plasma were compared before and ~1 week after RYGB. The effects of RYGB on subcutaneous adipose tissue and interstitial fluid 8‐iso‐PGF2α levels and subcutaneous adipose tissue expression of GPX‐3 were also assessed. Levels of 8‐iso‐PGF2α in subcutaneous and visceral adipose tissue were determined. Plasma 8‐iso‐PGF2α levels decreased (122 ± 75 to 56 ± 15 pg/ml, P = 0.001) and GPX activity increased (84 ± 18 to 108 ± 25 nmol/min/ml, P = 0.003) in the first week post‐RYGB. RYGB also resulted in reductions of 8‐iso‐PGF2α in subcutaneous adipose tissue (1,742 ± 931 to 1,132 ± 420 pg/g fat, P = 0.046) and interstitial fluid (348 ± 118 to 221 ± 83 pg/ml, P = 0.046) that were comparable to plasma (26–33%, P = 0.74). Adipose GPX‐3 expression was increased (6.7 ± 4.7‐fold, P = 0.004) in the first postoperative week. The improvements in oxidative stress occurred with minimal weight loss (2.4 ± 3.4%, P = 0.031) and elevations in plasma interleukin‐6 (18.0 ± 46.8 to 28.0 ± 58.9 pg/ml, P = 0.004). Subcutaneous and visceral adipose tissues express comparable 8‐iso‐PGF2α levels (1,204 ± 470 and 1,331 ± 264 pg/g fat, respectively; P = 0.34). These data suggest that RYGB affects adipose tissue leading to the restoration of adipose redox balance within the first postoperative week and that plasma 8‐iso‐PGF2α is primarily derived from subcutaneous adipose tissue.  相似文献   
10.

Background

The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic β-cell death. This study examines the synergistic effects of glucose and FFA on β-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined.

Principal Findings

Increasing glucose (5–25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3β (Gsk3β) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3β.

Conclusions/Significance

Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3β activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet β-cell Gsk3β as a potential therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号