首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8914篇
  免费   1316篇
  国内免费   6010篇
  2024年   16篇
  2023年   389篇
  2022年   446篇
  2021年   513篇
  2020年   646篇
  2019年   767篇
  2018年   708篇
  2017年   720篇
  2016年   670篇
  2015年   653篇
  2014年   624篇
  2013年   781篇
  2012年   666篇
  2011年   625篇
  2010年   531篇
  2009年   697篇
  2008年   624篇
  2007年   704篇
  2006年   602篇
  2005年   552篇
  2004年   471篇
  2003年   464篇
  2002年   372篇
  2001年   334篇
  2000年   307篇
  1999年   301篇
  1998年   245篇
  1997年   224篇
  1996年   224篇
  1995年   199篇
  1994年   178篇
  1993年   133篇
  1992年   126篇
  1991年   107篇
  1990年   106篇
  1989年   107篇
  1988年   76篇
  1987年   59篇
  1986年   50篇
  1985年   34篇
  1984年   34篇
  1983年   12篇
  1982年   51篇
  1981年   21篇
  1980年   23篇
  1979年   19篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Sugarcane cultivation supports Brazil as one of the largest world sugar and ethanol producer. In order to understand the impact of changing sugarcane harvest from manual to mechanized harvest, we studied the effect of machinery traffic on soil and consequently soil compaction upon soil microbial communities involved in nitrogen cycling. The impact of sugarcane harvest was dependent on soil depth and texture. At deeper soil layers, mechanized harvesting increases the abundance of nitrogen fixers and denitrifying communities (specifically nosZ clade I and II) while manual harvesting increases the abundance of ammonia oxidizers (specifically AOA) and increases denitrifying communities (nosZ clade I and II) on top and at intermediate depth. The effect of change on the harvest system is more evident on sandy soil than on clay soil, where soil indicators of compaction (bulk density and penetration resistance) were negatively correlated with soil microorganisms associated with the nitrogen cycle. Our results point to connections between soil compaction and N transformations in sugarcane fields, besides naming biological variables to be used as proxies for alterations in soil structure.  相似文献   
2.
There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to both regions. We related the extent of species distributions in each region to growth form and the distinction between upland and wetland habitats. We identified significant relationships between geographical distribution and plant traits in both native and exotic ranges as well as regional differences in the relationships. Range size was larger for herbaceous graminoids and forbs, especially annuals compared to perennials, than for woody species, and range size also was larger for plants of wetland compared to upland habitats. Distributions were more extensive in North America than in Eastern Asia, although native plants from both regions had broader distributions than non-natives, with exotics from elsewhere intermediate. Growth form and environment explained more of the variance in distribution of plants in North America than in Eastern Asia. The influence of growth form and habitat on distribution suggests that these traits might be related to tolerance of ecological conditions. In addition, the smaller extents of species in non-native compared to native areas suggest roles for dispersal limitation and adaptation to region-specific ecological conditions in determining distribution.  相似文献   
3.
4.
5.
目录     
《生态学杂志》2015,26(7):0
  相似文献   
6.
Folsomia Candida was maintained on potato dextrose agar (PDA) plates precolonised by the mycoparasite Coniothyrium minitans for 3 yr but the sciarid Bradysia sp. survived for a maximum of only three generations. Collembolans and sciarid larvae from these cultures were able to transmit C. minitans to uninoculated PDA plates through the survival of spores in faecal pellets. Adult and larval sciarids also transmitted C. minitans from PDA culture to uninoculated PDA plates by contamination on the cuticle. In soil and sand both sciarids and collembolans were able to transmit C. minitans from C. m/m'tans-inoculated to uninoculated sclerotia of Sclerotinia sclerotiorum. Inoculation of sclerotia with C. minitans enabled greater populations of larger collembolans to develop. In the glasshouse where C. minitans had been applied to the soil, one adult sciarid and four collembolans out of 70 and 101 insects collected respectively yielded C. minitans on placement onto PDA + Aureomycin.  相似文献   
7.
Simultaneous determination of 15N and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance was lower than 0.1%. The CV of repeated analyses of 15N-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproductibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method gave results which were 3% to 5% higher than those obtained with the Kjeldahl procedure. Since only small samples can be analysed, careful sample homogenization and fine grinding are very important. Evaluation of a diffusion method for preparing nitrate and ammonium in solution for automated 15N analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3 - and the NH4 + in aqueous solution were recovered in the trap after combined diffusion. The method is most suited for diffusing either NO3 - or NH4 + alone, but can be used for combined diffusion of the two ions.  相似文献   
8.
Transgenic plants and biogeochemical cycles   总被引:13,自引:0,他引:13  
  相似文献   
9.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
10.
Spartina alterniflora Lois. is a dominant species growing in intermediate and saline marshes of the US Gulf coast and Atlantic coastal marshes. S. alterniflora plants were subjected to a range of soil redox potential (Eh) conditions representing a well aerated to reduced conditions in a rhizotron system under controlled environmental conditions. The low soil Eh resulted in inhibition of root elongation shortly after treatment initiation. Root elongation was reduced as soil Eh approached values below ca. +350 mV. Substantial decrease in root elongation was noted when soil Eh fell below +200 mV. Generally, net photosynthetic rate (PN) decreased as soil Eh was reduced, with substantial reductions in PN found when Eh approached negative values. Average PN was reduced to 87, 64, and 44% of control under +340, +245, and -180 mV treatments, respectively. The reductions in root elongation and PN in response to low soil Eh indicated the adverse effects of low soil Eh on plant functioning and the need for periods of soil aeration that allow plants to resume normal functioning. Thus periods of drainage allowing soil aeration during the growing season appear to be critical to S. alterniflora by providing favorable conditions for root growth and gas exchange with important implications for plant carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号