首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14860篇
  免费   2380篇
  国内免费   7355篇
  2024年   22篇
  2023年   593篇
  2022年   636篇
  2021年   858篇
  2020年   1041篇
  2019年   1258篇
  2018年   1088篇
  2017年   1069篇
  2016年   995篇
  2015年   950篇
  2014年   1010篇
  2013年   1250篇
  2012年   892篇
  2011年   925篇
  2010年   753篇
  2009年   1055篇
  2008年   931篇
  2007年   1043篇
  2006年   956篇
  2005年   821篇
  2004年   688篇
  2003年   680篇
  2002年   563篇
  2001年   517篇
  2000年   494篇
  1999年   462篇
  1998年   355篇
  1997年   305篇
  1996年   300篇
  1995年   275篇
  1994年   270篇
  1993年   199篇
  1992年   182篇
  1991年   168篇
  1990年   167篇
  1989年   154篇
  1988年   102篇
  1987年   93篇
  1986年   82篇
  1985年   70篇
  1984年   62篇
  1983年   23篇
  1982年   73篇
  1981年   29篇
  1980年   40篇
  1979年   28篇
  1978年   19篇
  1977年   13篇
  1975年   8篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Sugarcane cultivation supports Brazil as one of the largest world sugar and ethanol producer. In order to understand the impact of changing sugarcane harvest from manual to mechanized harvest, we studied the effect of machinery traffic on soil and consequently soil compaction upon soil microbial communities involved in nitrogen cycling. The impact of sugarcane harvest was dependent on soil depth and texture. At deeper soil layers, mechanized harvesting increases the abundance of nitrogen fixers and denitrifying communities (specifically nosZ clade I and II) while manual harvesting increases the abundance of ammonia oxidizers (specifically AOA) and increases denitrifying communities (nosZ clade I and II) on top and at intermediate depth. The effect of change on the harvest system is more evident on sandy soil than on clay soil, where soil indicators of compaction (bulk density and penetration resistance) were negatively correlated with soil microorganisms associated with the nitrogen cycle. Our results point to connections between soil compaction and N transformations in sugarcane fields, besides naming biological variables to be used as proxies for alterations in soil structure.  相似文献   
2.
Patterns generated from ecological surveys are rarely tested in similar habitats to assess the accuracy of predictions. Testing empirically derived predictions provides a strong tool for establishing the consistency of general patterns in ecology. We test the consistency of beetle community associations with habitat complexity in open canopy forests and make both community and morphospecies-level comparisons with results from a previous study. We use Normalized Difference Vegetation Indices (NDVIs) from remote sensing as a surrogate for habitat complexity. The positive relationships between NDVIs and site-based beetle species richness and abundance were consistent in open canopy forests both south and north of Sydney, Australia. NDVIs were also useful for predicting differences in beetle composition in open canopy forests. Taxon-specific responses to NDVI differences in 'southern forests' were very similar to responses in 'northern forests', most likely reflecting beetle trophic roles. This study shows that NDVIs can be used as rapid biodiversity indicators, when integrated with identified faunal responses to vegetation structure, provided that the lower vegetation strata may be measured by remote sensing.  相似文献   
3.
4.
5.
目录     
《生态学杂志》2015,26(7):0
  相似文献   
6.
Folsomia Candida was maintained on potato dextrose agar (PDA) plates precolonised by the mycoparasite Coniothyrium minitans for 3 yr but the sciarid Bradysia sp. survived for a maximum of only three generations. Collembolans and sciarid larvae from these cultures were able to transmit C. minitans to uninoculated PDA plates through the survival of spores in faecal pellets. Adult and larval sciarids also transmitted C. minitans from PDA culture to uninoculated PDA plates by contamination on the cuticle. In soil and sand both sciarids and collembolans were able to transmit C. minitans from C. m/m'tans-inoculated to uninoculated sclerotia of Sclerotinia sclerotiorum. Inoculation of sclerotia with C. minitans enabled greater populations of larger collembolans to develop. In the glasshouse where C. minitans had been applied to the soil, one adult sciarid and four collembolans out of 70 and 101 insects collected respectively yielded C. minitans on placement onto PDA + Aureomycin.  相似文献   
7.
Simultaneous determination of 15N and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance was lower than 0.1%. The CV of repeated analyses of 15N-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproductibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method gave results which were 3% to 5% higher than those obtained with the Kjeldahl procedure. Since only small samples can be analysed, careful sample homogenization and fine grinding are very important. Evaluation of a diffusion method for preparing nitrate and ammonium in solution for automated 15N analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3 - and the NH4 + in aqueous solution were recovered in the trap after combined diffusion. The method is most suited for diffusing either NO3 - or NH4 + alone, but can be used for combined diffusion of the two ions.  相似文献   
8.
Transgenic plants and biogeochemical cycles   总被引:13,自引:0,他引:13  
  相似文献   
9.
Over the past decade, dramatic declines in frog populations have been noticed worldwide. To examine this decline, monitoring frogs is becoming increasingly important. Compared to traditional field survey methods, recent advances in acoustic sensor technology have greatly extended spatial and temporal scales for monitoring animal populations. In this paper, we examine the problem of monitoring frog populations by analysing acoustic sensor data, where the population is reflected by community calling activity and species richness. Specifically, a novel acoustic event detection (AED) algorithm is first proposed to filter out those recordings without frog calls. Then, multi-label learning is used to classify each individual recording with six acoustic features: linear predictive coding coefficients, Mel-frequency cepstral coefficients, linear-frequency cepstral coefficients, acoustic complexity index, acoustic diversity index, and acoustic evenness index. Next, frog community calling activity and species richness are estimated by accumulating the results of AED and multi-label learning, respectively. Finally, ordinary least squares regression (OLS) is conducted to reveal the relationship between frog populations (frog calling activity and species richness) and weather variables (maximum temperature and rainfall). Experimental results demonstrate that our proposed intelligent system can significantly facilitate the effort to estimate frog community calling activity and species richness with comparable accuracies. The statistical results of OLS indicate that rainfall pattern has a lagged impact on frog community calling activity (significant in the first day after rainy day) and species richness (significant in the fourth day after rainy day). Temperature is shown to affect species richness but is less likely to change calling activity.  相似文献   
10.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号