首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In the tropics, precipitation patterns result in seasonal fluctuations in the abundance and distribution of plant and animal species. Tropical predators and parasites are therefore faced with seasonal changes in prey and host availability. 2. This study investigates the seasonal interaction among a specialised ectoparasite, eavesdropping frog‐biting midges (Corethrella spp.), and their anuran hosts, examining how the abundance and diversity of the frog‐biting midge community fluctuate between the rainy (host abundant) and dry (host sparse) seasons. 3. Midges were captured in both the rainy and dry seasons using acoustic playbacks of calls from a common frog species that breeds during the rainy season, the túngara frog (Engystomops, Physalaemus, pustulosus). During the dry season túngara frog choruses are absent. To explore seasonal shifts in host preference or changes in the midge community due to host specificity, midges were also captured using playbacks of calls from a frog that breeds during the dry season, the pug‐nosed tree frog (Smilisca sila). 4. While the overall abundance of midges decreased in the dry season, only slight differences in the relative abundance between midge species were found. These results suggest that midge populations can shift between hosts as they become available across seasons, allowing adult populations of frog‐biting midges to persist year‐round. To overcome the challenge of detecting and localising different host species, it is proposed that frog‐biting midges have evolved a generalised acoustic template, allowing them to respond to a broad range of available hosts, regardless of seasonal host composition.  相似文献   

2.
Temporal variation represents an important component in understanding the structure of ecological communities and species coexistence. We examined calling phenology of an assemblage of anurans in the Gran Chaco ecoregion of Bolivia by deploying automated recording devices to document nocturnally vocalizing amphibians nightly at seven ponds from 20 January 2011 until 31 October 2011. Using logistic regression, we modelled the relationships between temperature, rainfall and photoperiod with calling activity. There was a distinct seasonal effect with calling activity concentrated in the rainy season with no species detected during the dry season from June until the end of October. Calling activity was positively and significantly correlated with photoperiod in 9 of the 10 species analyzed, but there were distinct species‐specific relationships associated with rainfall and temperature. All of these species utilize ephemeral ponds as breeding sites, which can account for their reliance on rainfall as an important driver in calling activity. Two prolonged breeders exhibited similar seasonal breeding patterns across the rainy season, but differed in their response to daily abiotic factors, which might be attributed to the constraints imposed by their reproductive mode. Explosive breeders needed several days of rain to elicit calling. Two pairs of congeners had distinct species‐specific relationships between their calling activity and abiotic factors, even though the congeners shared the same reproductive mode, suggesting that the reproductive modes vary in the constraints imposed on calling activity. The patterns observed suggest that calling phenology of tropical anurans is determined by the interaction of exogenous factors (i.e. climatic variables) and endogenous factors (i.e. reproductive modes).  相似文献   

3.
Soundscape ecology and ecoacoustics study the spatiotemporal dynamics of a soundscape and how the dynamics reflect and influence ecological processes in the environment. Soundscape analysis methods employ acoustic recording units (ARUs) that collect acoustic data in study areas over time. Analyzing these data includes computation of several acoustic diversity indices developed to quantify species abundance, richness, or habitat condition through digital audio processing and algorithm adaptations for within-group populations. However, the success of specific indices is often dependent on habitat type and biota richness present and analyzing these data can be challenging due to temporal pseudo-replication. Time-series analytical methods address the inherent problems of temporal autocorrelation for soundscape analyses challenges. Animal population dynamics fluctuate in a variety of ways due to changes in habitat or natural patterns of a landscape and chronic noise exposure, with soundscape phenology patterns evident in terrestrial and aquatic environments. Historical phenological soundscape patterns have been used to predict expected soundscape patterns in long-term studies but limited work has explored how forecasting can quantify changes in short-term studies. We evaluate how forecasting from an acoustic index can be used to quantify change in an acoustic community response to a loud, acute noise. We found that the acoustic community of a Midwestern restored prairie had decreased acoustic community activity after a loud sound event (LSE), a Civil War Reenactment, mainly driven by observed changes in the bird community and quantified using two methods: an automated acoustic index and species richness. Time-series forecasting maybe considered an underutilized tool in analyzing acoustic data whose experimental design can be flawed with temporal autocorrelation. Forecasting using auto ARIMA with acoustic indices could benefit decision makers who consider ecological questions at different time scales.  相似文献   

4.
Many acoustic surveys have been initiated to monitor anuran populations in North America. We used the Ontario Backyard Frog Survey to examine temporal and spatial trends, from 1994 to 2001. Our data suggest that there have been no consistent trends in site occupancy during this time period, but there were some differences among years. Both American toads and northern leopard frogs were more prevalent in 1995 than in 1994. Similarly, species richness was higher in 1995 and 1996 compared to most other years. Individual populations of species, however, often were not stable. Extinction and colonization rates varied among species, and ranged from 1.5 to 19.5% per year, and site occupancy was negatively correlated with extinction rates. Daily detection probabilities were often quite low, and were primarily driven by the perceived calling intensity. We recommend: (i) that monitoring programs attempt to preserve common survey routes, despite heavy turnover of volunteers, (ii) calling surveys be timed to maximize detection probabilities, and (iii) analyses based upon landscape features and GIS approaches should be used to determine localized changes in site occupancy or species richness.  相似文献   

5.
This study describes the structure of the Chironomidae community associated with bryophytes in a first-order stream located in a biological reserve of the Atlantic Forest, during two seasons. Samples of bryophytes adhered to rocks along a 100-m stretch of the stream were removed with a metal blade, and 200-mL pots were filled with the samples. The numerical density (individuals per gram of dry weight), Shannon’s diversity index, Pielou’s evenness index, the dominance index (DI), and estimated richness were calculated for each collection period (dry and rainy). Linear regression analysis was employed to test the existence of a correlation between rainfall and the individual’s density and richness. The high numerical density and richness of Chironomidae taxa observed are probably related to the peculiar conditions of the bryophyte habitat. The retention of larvae during periods of higher rainfall contributed to the high density and richness of Chironomidae larvae. The rarefaction analysis showed higher richness in the rainy season related to the greater retention of food particles. The data from this study show that bryophytes provide stable habitats for the colonization by and refuge of Chironomidae larvae, mainly under conductions of faster water flow and higher precipitation.  相似文献   

6.
Natural resource extraction is increasing rapidly in tropical forests, but we lag behind in understanding the impacts of these disturbances on biodiversity. In high diversity tropical habitats, acoustic monitoring is an efficient tool for sampling a large proportion of the fauna across varied spatial and temporal scales. We used passive acoustic monitoring in a pre-montane forest in Peru to investigate how soundscape composition and richness of acoustic frequencies varied with distance from a natural gas exploratory well and with operational phase (construction and drilling). We also evaluated how anuran and avian species richness and vocal activity varied with distance and between phases. Soundscape analyses showed that acoustic frequency similarity was greatest among sites closer to (≤250 m) and farther from (≥500 m) the platform. Soundscapes revealed more frequencies were used during construction and showed a weak trend of increasing frequency richness with increasing distance from the disturbance. Avian species richness and detections increased with distance from the platform, but anuran richness and detections declined with distance. Operational phase did not play a significant role in overall richness or activity patterns of either group. Among birds, insectivore detections increased with distance from the platform, and nectarivores were detected more frequently during the drilling phase. Results demonstrate that acoustic monitoring and soundscape analyses are useful tools for evaluating the impact of development activity on the vocalizing community, and should be implemented as a best practice in monitoring biodiversity and for guiding specific mitigation strategies.  相似文献   

7.
Wong S  Parada H  Narins PM 《Biotropica》2009,41(1):74-80
Call rate suppression is a common short-term solution for avoiding acoustic interference in animals. It has been widely documented between and within frog species, but the effects of non-anuran calling on frog vocalizations are less well known. Heterospecific acoustic interference on the calling of male Oophaga pumilio (formerly Dendrobates pumilio) was studied in a lowland, wet tropical forest in SE Nicaragua. Acoustic playback experiments were conducted to characterize the responses of O. pumilio males to interfering calls of cicadas, two species of crickets, and a sympatric dendrobatid frog, Phyllobates lugubris. Call rate, call bout duration, percent of time calling, dominant frequency, and latency to first-call were analyzed. Significant call rate suppression was observed during all stimulus playbacks, yet no significant differences were found in spontaneous call rates during pre- and postplayback trials. Dominant frequency significantly decreased after P. lugubris playback and first-call latency significantly decreased in response to both cicada and tree cricket playbacks. These results provide robust evidence that O. pumilio males can dynamically modify their calling pattern in unique ways, depending on the source of the heterospecific acoustic interference.  相似文献   

8.
Understanding the influence of landscape change on animal populations is critical to inform biodiversity conservation efforts. A particularly important goal is to understand how urban density affects the persistence of animal populations through time, and how these impacts can be mediated by habitat provision; but data on this question are limited for some taxa. Here, we use data from a citizen science monitoring program to investigate the effect of urbanization on patterns of frog species richness and occurrence over 13 years. Sites surrounded by a high proportion of bare ground (a proxy for urbanization) had consistently lower frog occurrence, but we found no evidence that declines were restricted to urban areas. Instead, several frog species showed declines in rural wetlands with low-quality habitat. Our analysis shows that urban wetlands had low but stable species richness; but also that population trajectories are strongly influenced by vegetation provision in both the riparian zone and the wider landscape. Future increases in the extent of urban environments in our study area are likely to negatively impact populations of several frog species. However, existing urban areas are unlikely to lose further frog species in the medium term. We recommend that landscape planning and management focus on the conservation and restoration of rural wetlands to arrest current declines, and the revegetation of urban wetlands to facilitate the re-expansion of urban-sensitive species.  相似文献   

9.
Knowledge on the distribution of mosquito communities over time and across human-modified landscapes is important in determining the risk for vector-borne disease. The diversity of mosquitoes along a rainy season and edge effects were evaluated in a riparian forest in the Cerrado biome, Southeastern Brazil. Mosquito communities were sampled with Shannon traps in three distinct habitats (forest interior, forest edge and pasture) throughout an entire rainy season, comprising five sampling months (December 2015 to April 2016). A total of 13 549 mosquitoes belonging to 54 species were sampled. Mosquito species richness and abundance were greater in February, which coincided with the middle of the rainy season and just after the months with greater rainfall. Mosquito species richness did not differ among habitats for any particular month. In February, month when 74% of individuals were recorded, mosquito abundance was lower in the pasture compared with the forest edge and interior, which did not differ statistically from each other. Four of the six most abundant mosquito species (which account for 93.5% of the sampled individuals) had more individuals collected in the forest edge, and 28 species were more abundant at the edge compared with 15 species in the forest interior. Months with high rainfall probably allowed the availability and maintenance of high-water level in breeding sites leading to a further increase in mosquito populations. While the pasture did not seem to have the ideal abiotic conditions and/or resources (e.g. food and breeding sites) for mosquito species, edge effects appear to favour mosquito populations. Therefore, the risk of mosquito-borne diseases is expected to be greater in the middle of the rain season at the riparian forest-pasture edge, when and where a greater number of disease-vectoring species are present.  相似文献   

10.
Aim To analyse the global patterns in species richness of Viperidae snakes through the deconstruction of richness into sets of species according to their distribution models, range size, body size and phylogenetic structure, and to test if environmental drivers explaining the geographical ranges of species are similar to those explaining richness patterns, something we called the extreme deconstruction principle. Location Global. Methods We generated a global dataset of 228 terrestrial viperid snakes, which included geographical ranges (mapped at 1° resolution, for a grid with 7331 cells world‐wide), body sizes and phylogenetic relationships among species. We used logistic regression (generalized linear model; GLM) to model species geographical ranges with five environmental predictors. Sets of species richness were also generated for large and small‐bodied species, for basal and derived species and for four classes of geographical range sizes. Richness patterns were also modelled against the five environmental variables through standard ordinary least squares (OLS) multiple regressions. These subsets are replications to test if environmental factors driving species geographical ranges can be directly associated with those explaining richness patterns. Results Around 48% of the total variance in viperid richness was explained by the environmental model, but richness sets revealed different patterns across the world. The similarity between OLS coefficients and the primacy of variables across species geographical range GLMs was equal to 0.645 when analysing all viperid snakes. Thus, in general, when an environmental predictor it is important to model species geographical ranges, this predictor is also important when modelling richness, so that the extreme deconstruction principle holds. However, replicating this correlation using subsets of species within different categories in body size, range size and phylogenetic structure gave more variable results, with correlations between GLM and OLS coefficients varying from –0.46 up to 0.83. Despite this, there is a relatively high correspondence (r = 0.73) between the similarity of GLM‐OLS coefficients and R2 values of richness models, indicating that when richness is well explained by the environment, the relative importance of environmental drivers is similar in the richness OLS and its corresponding set of GLMs. Main conclusions The deconstruction of species richness based on macroecological traits revealed that, at least for range size and phylogenetic level, the causes underlying patterns in viperid richness differ for the various sets of species. On the other hand, our analyses of extreme deconstruction using GLM for species geographical range support the idea that, if environmental drivers determine the geographical distribution of species by establishing niche boundaries, it is expected, at least in theory, that the overlap among ranges (i.e. richness) will reveal similar effects of these environmental drivers. Richness patterns may be indeed viewed as macroecological consequences of population‐level processes acting on species geographical ranges.  相似文献   

11.
This study evaluated the influence of rainfall amount on the abundance, species richness, and species occurrence and abundance distribution of the ciliate community associated with the bromeliad Aechmea distichantha. The plants were collected from a rock wall of about 10‐km long at the left bank of Paraná River. We assessed the effects of both spatial and temporal variables on the community attributes, as well as whether plants geographically closer have a similar abundance distribution and species composition. The ciliate community was substantially distinct between both hydrological periods, with greater values of species richness and abundance in the rainy period. No spatial structuring (differences in the species occurrence and abundance distribution among strata) or geographical similarity (similarity in ciliate species composition among the plants) was found. Multiple regression analysis showed a positive relationship only between the ciliate abundances and water volumes for both periods. Although few of the formulated predictions were confirmed, our study provides valuable information on the ecological aspects of the ciliate community inhabiting bromeliad phytotelmata.  相似文献   

12.
基于对24个样地的调查数据,采用物种丰富度指数、Shannon-Wiener指数以及Jaccard相似性指数,对辽东山地老秃顶子石河冰缘地貌森林群落物种多样性及其影响因子进行了研究。结果显示:(1)石河冰缘地貌森林群落中落叶阔叶林、针阔混交林和暗针叶林的物种丰富度指数平均值分别为41±10、34±5和31±7。森林群落物种丰富度变异系数均为中等变异性。(2)石河冰缘地貌森林群落中落叶阔叶林、针阔混交林和暗针叶林的Shannon-Wiener指数平均值分别为1.67±0.32、1.50±0.18和1.29±0.25。(3)石河冰缘地貌森林群落间Jaccard相似性指数为0.037~0.530,且集中在极不相似和中等不相似区间。(4)相关性分析结果显示,石河冰缘地貌海拔高度与森林群落乔木层物种丰富度指数、Shannon-Wiener指数呈极显著负相关(P0.01),与灌木层物种丰富度指数呈显著负相关(P0.05);土壤电导率和含盐量均与森林群落物种多样性指数呈显著正相关(P0.05);土壤pH值与灌木层物种丰富度指数、Shannon-Wiener指数呈极显著正相关(P0.01);土壤CaO含量分别与乔木层和灌木层的物种丰富度指数、乔木层Shannon-Wiener指数呈显著正相关(P0.05)。这表明海拔高度、土壤电导率、盐含量、pH值和CaO含量是影响石河冰缘地貌森林群落物种多样性变化的重要因素。  相似文献   

13.
Fern species richness along a central Himalayan elevational gradient, Nepal   总被引:10,自引:0,他引:10  
Aim The study explores fern species richness patterns along a central Himalayan elevational gradient (100–4800 m a.s.l.) and evaluates factors influencing the spatial increase and decrease of fern richness. Location The Himalayas stretch from west to east by 20°, i.e. 75–95° east, and Nepal is located from 80 to 88° east in this range. Methods We used published data of the distribution of ferns and fern allies to interpolate species elevational ranges. Defining species presence between upper and lower elevation limit is the basis for richness estimates. The richness pattern was regressed against the total number of rainy days, and gradients that are linearly related to elevation, such as length of the growing season, potential evapotranspiration (PET, energy), and a moisture index (MI = PET/mean annual rainfall). The regressions were performed by generalized linear models. Results A unimodal relationship between species richness and elevation was observed, with maximum species richness at 2000 m. Fern richness has a unimodal response along the energy gradients, and a linear response with moisture gradients. Main conclusions The study confirms the importance of moisture on fern distributions as the peak coincides spatially with climatic factors that enhance moisture levels; the maximum number of rainy days and the cloud zone. Energy‐related variables probably control species richness directly at higher elevations but at the lower end the effect is more probably related to moisture.  相似文献   

14.
  1. Soundscapes can provide information about a wide range of habitats and species through the recording of vocalisations over long temporal scales. Because of the large volumes of data collected, computational approaches, such as the application of acoustic indices, are required to extract useful information from long-duration recordings.
  2. Acoustic indices summarise various soundscape features into frequency ranges over defined time intervals and can aid in the visual exploration, detection, and analysis of species vocalisation patterns. Here, we examine the performance of combinations of three acoustic indices commonly used in visual exploration, the acoustic complexity index, the temporal entropy spectrum index, and the event spectrum index, and assess their ability to distinguish species and describe acoustic features commonly used to detect species and analyse activity. Our case study focuses on three frog species with distinct call structures from Bickerton Island, Northern Territory, Australia. Call structure was categorised based on the number of pulses and harmonics.
  3. We summarised acoustic activity by calculating acoustic indices in 256 equal-sized bins over the entire the frequency spectrum, for 30-s intervals, and found that acoustic index values could be used to distinguish species and describe acoustic features. The acoustic complexity index was the most effective index for distinguishing species. To describe acoustic features, we examined correlations between acoustic index values and summarised acoustic features, including call rate, total duration, loudness and signal-to-noise ratio. In single-pulsed species with no harmonics, we found spectral index values were significantly and sometimes strongly correlated with acoustic features. In comparison, species with harmonics were found to be weakly and less frequently correlated with acoustic features even if sampled calls were loud and have high signal-to-noise ratio. We suggest that acoustic indices have the potential to describe acoustic features in single-pulsed species but are limited in those with harmonics.
  4. We conclude that acoustic indices can be a useful tool to distinguish some anuran species and to broadly understand specific acoustic features used to analyse calling activity over long periods of time.
  5. Further research is required to better understand the relationships between acoustic indices and acoustic features to determine the general utility of indices to detect and distinguish audible species and to identify other acoustic features of various taxa.
  相似文献   

15.
嘉陵江四川段藻类植物群落结构及水质评价   总被引:6,自引:0,他引:6  
为了揭示嘉陵江四川段藻类植物的群落结构特征和水质现状,分别于枯水期(1月)和丰水期(9月)沿江段至上而下分析了12个样点藻类群落的种类组成、Shannon多样性指数(H′)、Pielou均匀度指数(E)和Margalef丰富度指数(d).结果表明: 嘉陵江四川段共采集到藻类植物8门42科95属171种(包括变种),其中硅藻、绿藻和蓝藻为各样点的优势类群.整个江段枯水期藻类植物的平均细胞密度为14.71×104 ind·L-1,金溪和红岩子样点的密度最高,分别为28.33×104和25.40×104 ind·L-1;群落中以硅藻的物种数量最为丰富.丰水期藻类植物的平均细胞密度为10.78×104 ind·L-1,以青居样点的密度最低,仅3.31×104ind·L-1,绿藻和蓝藻物种数量有所增加.整个江段12个样点枯水期和丰水期的平均d、平均H′和平均E分别为2.35、1.60、0.31和2.57、2.09和0.39.嘉陵江四川段的藻类植物群落结构、细胞密度、多样性指数和均匀度指数的时空分布格局差异显著.水质整体为中污染型,其中金溪和沙溪样点为寡污型或β中污型,水质较好;苍溪、红岩子、新政和青居样点水质较差,属α中-污型.  相似文献   

16.
Concurrent with the elevation of the concern over the state of sound in the ocean, advances in terrestrial acoustic monitoring techniques have produced concepts and tools that may be applicable to the underwater world. Several index values that convey information related to acoustic diversity with a single numeric measurement made from acoustic recordings have been proposed for rapidly assessing community biodiversity. Here we apply the acoustic biodiversity index method to low frequency recordings made from three different ocean basins to assess its appropriateness for characterizing species richness in the marine environment. Initial results indicated that raw acoustic entropy (H) values did not correspond to biological patterns identified from individual signal detections and classification. Noise from seismic airgun activity masked the weaker biological signals and confounded the entropy calculation. A simple background removal technique that subtracted an average complex spectrum characteristic of seismic exploration signals from the average spectra of each analysis period that contained seismic signals was applied to compensate for salient seismic airgun signals present in all locations. The noise compensated (HN) entropy index was more reflective of biological patterns and holds promise for the use of rapid acoustic biodiversity in the marine environment as an indicator of habitat biodiversity and health.  相似文献   

17.
There have been numerous claims in the ecological literature that spatial autocorrelation in the residuals of ordinary least squares (OLS) regression models results in shifts in the partial coefficients, which bias the interpretation of factors influencing geographical patterns. We evaluate the validity of these claims using gridded species richness data for the birds of North America, South America, Europe, Africa, the ex‐USSR, and Australia. We used richness in 110×110 km cells and environmental predictor variables to generate OLS and simultaneous autoregressive (SAR) multiple regression models for each region. Spatial correlograms of the residuals from each OLS model were then used to identify the minimum distance between cells necessary to avoid short‐distance residual spatial autocorrelation in each data set. This distance was used to subsample cells to generate spatially independent data. The partial OLS coefficients estimated with the full dataset were then compared to the distributions of coefficients created with the subsamples. We found that OLS coefficients generated from data containing residual spatial autocorrelation were statistically indistinguishable from coefficients generated from the same data sets in which short‐distance spatial autocorrelation was not present in all 22 coefficients tested. Consistent with the statistical literature on this subject, we conclude that coefficients estimated from OLS regression are not seriously affected by the presence of spatial autocorrelation in gridded geographical data. Further, shifts in coefficients that occurred when using SAR tended to be correlated with levels of uncertainty in the OLS coefficients. Thus, shifts in the relative importance of the predictors between OLS and SAR models are expected when small‐scale patterns for these predictors create weaker and more unstable broad‐scale coefficients. Our results indicate both that OLS regression is unbiased and that differences between spatial and nonspatial regression models should be interpreted with an explicit awareness of spatial scale.  相似文献   

18.
An effective practice for monitoring bird communities is the recognition and identification of their acoustic signals, whether simple, complex, fixed or variable. A method for the passive monitoring of diversity, activity and acoustic phenology of structural species of a bird community in an annual cycle is presented. The method includes the semi-automatic elaboration of a dataset of 22 vocal and instrumental forms of 16 species. To analyze bioacoustic richness, the UMAP algorithm was run on two parallel feature extraction channels. A convolutional neural network was trained using STFT-Mel spectrograms to perform the task of automatic identification of bird species. The predictive performance was evaluated by obtaining a minimum average precision of 0.79, a maximum equal to 1.0 and a mAP equal to 0.97. The model was applied to a huge set of passive recordings made in a network of urban wetlands for one year. The acoustic activity results were synchronized with climatological temperature data and sunlight hours. The results confirm that the proposed method allows for monitoring a taxonomically diverse group of birds that nourish the annual soundscape of an ecosystem, as well as detecting the presence of cryptic species that often go unnoticed.  相似文献   

19.
Monitoring the abundance of cryptic species inevitably relies on the use of index methods. Unfortunately, detectability is often confounded by unidentified covariates. One such species is the critically endangered Australasian Bittern Botaurus poiciloptilus. Current monitoring relies upon the ability to count males based on the conspicuous breeding calls of males. However, as in many vocal species, calling rates vary spatially and temporally, making it necessary to account for this when using call counts to index abundance. We undertook 461 15‐min call counts of Australasian Bitterns, in a range of conditions, during two breeding seasons at Whangamarino wetland, New Zealand. We fitted a range of generalized linear mixed models to these data to determine which factors were the best predictors of calling rate per individual Bittern (CRPI), allowing us to make recommendations regarding the optimum time and conditions for monitoring. Bittern CRPI was predictable in terms of time of day, month, cloud cover, rainfall and certain moon parameters, but some spatial and temporal variation remained unexplained. Results showed that the best time to detect Australasian Bitterns was 1 h before sunrise, in September (austral spring), on a moonlit night with no cloud or rain. Such models are useful for identifying times and conditions when counts are the highest and least variable, and could be applied to any species or cue count monitoring method where detection depends on counting calling individuals. Results can be used to standardize index counts, or sensibly to adjust and compare counts from different times. Standardizing monitoring in this way can lead to the development of monitoring methods that have a greater power to show population changes across shorter time periods. Moreover, the use of modelling processes to estimate effect sizes creates potential for such methods to be applied in circumstances where monitoring conditions are rarely optimum and standardization creates logistical trade‐offs, something that is particularly common in studies of cryptic species.  相似文献   

20.
Establishing a direct link between climate change and fluctuations in animal populations through long-term monitoring is difficult given the paucity of baseline data. We hypothesized that social wasps are sensitive to climatic variations, and thus studied the impact of ENSO events on social wasp populations in French Guiana. We noted that during the 2000 La Niña year there was a 77.1% decrease in their nest abundance along ca. 5 km of forest edges, and that 70.5% of the species were no longer present. Two simultaneous 13-year surveys (1997–2009) confirmed the decrease in social wasps during La Niña years (2000 and 2006), while an increase occurred during the 2009 El Niño year. A 30-year weather survey showed that these phenomena corresponded to particularly high levels of rainfall, and that temperature, humidity and global solar radiation were correlated with rainfall. Using the Self-Organizing Map algorithm, we show that heavy rainfall during an entire rainy season has a negative impact on social wasps. Strong contrasts in rainfall between the dry season and the short rainy season exacerbate this effect. Social wasp populations never recovered to their pre-2000 levels. This is probably because these conditions occurred over four years; heavy rainfall during the major rainy seasons during four other years also had a detrimental effect. On the contrary, low levels of rainfall during the major rainy season in 2009 spurred an increase in social wasp populations. We conclude that recent climatic changes have likely resulted in fewer social wasp colonies because they have lowered the wasps'' resistance to parasitoids and pathogens. These results imply that Neotropical social wasps can be regarded as bio-indicators because they highlight the impact of climatic changes not yet perceptible in plants and other animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号