首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11781篇
  免费   970篇
  国内免费   1977篇
  2023年   201篇
  2022年   183篇
  2021年   278篇
  2020年   357篇
  2019年   375篇
  2018年   367篇
  2017年   367篇
  2016年   406篇
  2015年   402篇
  2014年   406篇
  2013年   591篇
  2012年   394篇
  2011年   468篇
  2010年   345篇
  2009年   458篇
  2008年   497篇
  2007年   536篇
  2006年   514篇
  2005年   540篇
  2004年   407篇
  2003年   468篇
  2002年   420篇
  2001年   376篇
  2000年   317篇
  1999年   341篇
  1998年   321篇
  1997年   297篇
  1996年   323篇
  1995年   302篇
  1994年   270篇
  1993年   326篇
  1992年   285篇
  1991年   282篇
  1990年   277篇
  1989年   282篇
  1988年   262篇
  1987年   195篇
  1986年   195篇
  1985年   193篇
  1984年   189篇
  1983年   100篇
  1982年   153篇
  1981年   122篇
  1980年   96篇
  1979年   70篇
  1978年   40篇
  1977年   36篇
  1976年   37篇
  1975年   16篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Sugarcane cultivation supports Brazil as one of the largest world sugar and ethanol producer. In order to understand the impact of changing sugarcane harvest from manual to mechanized harvest, we studied the effect of machinery traffic on soil and consequently soil compaction upon soil microbial communities involved in nitrogen cycling. The impact of sugarcane harvest was dependent on soil depth and texture. At deeper soil layers, mechanized harvesting increases the abundance of nitrogen fixers and denitrifying communities (specifically nosZ clade I and II) while manual harvesting increases the abundance of ammonia oxidizers (specifically AOA) and increases denitrifying communities (nosZ clade I and II) on top and at intermediate depth. The effect of change on the harvest system is more evident on sandy soil than on clay soil, where soil indicators of compaction (bulk density and penetration resistance) were negatively correlated with soil microorganisms associated with the nitrogen cycle. Our results point to connections between soil compaction and N transformations in sugarcane fields, besides naming biological variables to be used as proxies for alterations in soil structure.  相似文献   
2.
The water relations of shoots of young jack pine (Pinus banksiana Lamb.) seedlings were examined 6 and 15 weeks after the initiation of four different dynamic nitrogen (N) treatments using a pressure-volume analysis. The N treatments produced a wide range of needle N concentrations from 12 to 32 mg g?1 dry mass and a 10-fold difference in total dry mass at 15 weeks. Osmotic potential at full turgor did not change over the range of needle N concentrations observed. Osmotic potential at turgor-loss point, however, declined as N concentrations decreased, indicating an increased ability of N-deficient jack pine plants to maintain turgor. The increase could be attributed largely to an increase in cell wall elasticity, suggesting that elasticity changes may be a common, significant adaptation of plants to environmental stresses. Dry mass per unit saturated water almost doubled as needle N level dropped from 32 to 12 mg g?1 and was inversely correlated to the bulk modulus of elasticity. This suggests that cell wall elasticity is determined more by the nature of its cross-linking matrix than by the total amount of cell wall material present. Developmental change was evident in the response of some water relation variables to N limitation.  相似文献   
3.
4.
The pollution of aquifers by NO?3 in temperate environments is aggravated by farming practices that leave the ground bare during winter. The use of catch crops during this time may decrease nitrate loss from the soil. Nitrate uptake by several catch crop species (Brassica napus L., Sinapis alba L., Brassica rapa L., Raphanus sativus L., Trifolium alexandrinum L., Trifolium incarnatum L., Phacelia tanacetifolia Benth., Lolium perenne L., Lolium multiflorum Lam. and Secale cereale L.) was here studied in relation to transpiration rate and low temperatures applied to the whole plant or to roots only. The Michaelis constant (Km), maximum uptake rate (Vmax), time of induction and contributions of inducible and constitutive mechanisms were estimated from measurements of NO?3 depletion in the uptake medium. There were large differences between species, with KmM) values ranging between 5.12 ± 0.64 (Trifolium incarnatum) and 36.4 ± 1.97 (Lolium perenne). Maximum NO?3 uptake rates expressed per unit root weight were influenced by ageing, temperature and previous NO?3 nutrition. They were also closely correlated with water flow through the roots and with shoot/root ratio of these species. The combined results from all species and treatments showed that Vmax increased with shoot/root ratio, suggesting a regulatory role for the shoots in NO?3 uptake. Overall, the results showed a great diversity in NO?3 uptake characteristics between species in terms of kinetic parameters, contribution of the constitutive system (100% of total uptake in ryegrass, nil in Fabaceae) and time of induction.  相似文献   
5.
Simultaneous determination of 15N and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance was lower than 0.1%. The CV of repeated analyses of 15N-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproductibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method gave results which were 3% to 5% higher than those obtained with the Kjeldahl procedure. Since only small samples can be analysed, careful sample homogenization and fine grinding are very important. Evaluation of a diffusion method for preparing nitrate and ammonium in solution for automated 15N analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3 - and the NH4 + in aqueous solution were recovered in the trap after combined diffusion. The method is most suited for diffusing either NO3 - or NH4 + alone, but can be used for combined diffusion of the two ions.  相似文献   
6.
Bacteria causing mottled stripe disease in sugar cane, known asPseudomonas rubrisubalbicans, were shown to be able to fix molecular N2 and to grow on it. The root associated diazotroph known asHerbaspirillum seropedicae, after artificial inoculation caused mottled stripe disease symptoms on sorghum and Napier grass but not on sugar cane. Both bacteria could be reisolated from leaves even 60 days after. Sugar cane leaves contained large numbers of these bacteria even in the uninoculated controls. Additional physiological characteristics of six strains ofP. rubrisubalbicans were compared with those of twoH. seropedicae strains and were shown to be very similar.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号