首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Using sand culture, we examined the responses of 6-month-old jack pine (Pinus banksiana Lamb.) seedlings to boron and salinity (sodium chloride and sodium sulfate) treatments. During 4 weeks of treatments, 60 mM NaCl and 60 mM Na2SO4 significantly decreased survival, new shoot length, number of new roots, shoot to root dry weight ratio and transpiration rates. When applied in absence of the salts, B had little effect on the measured variables. However, when applied together with salts, B decreased seedling survival, increased needle injury and altered tissue elemental concentrations in jack pine seedlings. In 2 mM B treatment, B concentration was higher in the shoots than in the roots. However, when 2 mM B was present in NaCl and Na2SO4 treatments, shoot boron concentration declined and greater proportion of B accumulated in the roots. This shift corresponded to a decline in transpiration rates. In plants treated with NaCl, Na accumulated primarily in the shoots, while in Na2SO4-treated plants Na accumulated mostly in the roots. Based on the electrolyte leakage and needle necrosis data, Cl appears to be the major factor contributing to seedling injury and B aggravates the injurious effects of NaCl. We suggest that Cl may contribute to Na and B toxicity in jack pine by altering cell membrane permeability leading to increased Na concentration in the shoots.  相似文献   

2.
To determine how tissue water relations vary and contribute to turgor maintenance in species from contrasting ecological zones, seedlings of jack pine ( Pinus banksiana Lamb.), black spruce ( Picea mariana [Mill] B.S.P.) and flooded gum ( Eucalyptus grandis W. Hill ex Maiden) were subjected to an 8 day drought stress by water withholding with and without prior mild water stress conditioning. Jack pine, a deep-rooted species from dry, sandy boreal sites, lost turgor at the lowest relative water content (75–65%) and water potential, and had lowest maximum bulk elastic modulus (Emax of 5.2–5.8 MPa). Although this suggests a high inherent dehydration tolerance, jack pine did not further adjust its elasticity when repeatedly stressed. Black spruce, a shallow-rooted species from predominantly moist sites in the boreal region, lost turgor at intermediate relative water content (86–76%) and water potential, but could adjust its elasticity to maintain turgor in repeatedly stressed tissues. Flooded gum, a deep-rooted species from moist, warm temperate-subtropical regions, had a low inherent drought tolerance since it lost turgor at higher relative water content (88–84%) and water potential, but was capable of some adjustment when the stress was repeated. Elastic adjustment (<3.7 MPa) was more important for turgor maintenance than osmotic adjustment (<0.13 MPa), which was statistically nonsignificant. Maximum bulk modulus of elasticity, but not osmotic potentials at full turgor, was significantly correlated with the relative water content and water potential at zero turgor in droughted seedlings. These results highlight the importance of tissue shrinkage for dehydration tolerance. Both the inherent capacity for turgor maintenance of a species under drought and its ability to adjust to repeated drought should be considered in genetic selections for drought tolerance.  相似文献   

3.
The cell walls in the new white roots of jack pine (Pinus banksiana Lamb.) were observed to constrict around the shrinking protoplast of osmotically stressed roots, and pressure was maintained via an apparent adjustment of cell-wall size and elasticity. These elastic alterations of the cell wall permitted the root cells to maintain full turgor despite the loss of most of the water in the tissue. The constriction of the root cell wall around the dehydrating protoplasts to maintain turgor may reflect changes in cell wall structure. We found that these shrinking root cells synthesize and secrete into the intercellular fluid a set of proteins. These proteins become tightly associated (i.e. guanidine HCl- and sodium dodecyl sulfate-insoluble) with the cell wall but can be released from the matrix, after briefly boiling in 0.1% sodium dodecyl sulfate, by the combination of guanidine HCl, CaCl2 and dithiothreitol. However, these cell-wall proteins became insoluble with time. The proteins could subsequently be destructively extracted from the wall with acid NaClO2 treatments. After these proteins were incorporated into the cell walls, the roots adopted a new, smaller maximal tissue volume and elastic coefficients returned to normal levels. Received: 8 July 1998 / Accepted: 19 November 1998  相似文献   

4.
Black spruce ( Picea mariana ), white spruce ( Picea glauca ) and jack pine ( Pinus banksiana ) were inoculated with Suillus tomentosus and subjected to potassium fluoride (1 m M KF and 5 m M KF) in the presence and absence of 60 m M NaCl. The NaCl and KF treatments reduced total dry weights in jack pine and black spruce seedlings, but they did not affect total dry weights in white spruce seedlings. The addition of 60 m M NaCl to KF treatment solutions alleviated fluoride-induced needle injury in ectomycorrhizal (ECM) black spruce and white spruce, but had little effect in jack pine seedlings. Both KF and 60 m M NaCl treatments reduced E values compared with non-treated control seedlings. However, with the exception of small reductions of Kr by NaCl treatments in black spruce, the applied KF and NaCl treatments had little effect on Kr in ECM plants. Chloride tissue concentrations in NaCl-treated plants were not affected by the presence of KF in treatment solutions. However, shoot F concentrations in ECM black spruce and white spruce treated with 5 m M KF + 60 m M NaCl were significantly reduced compared with the 5 m M KF treatment. The results point to a possible competitive inhibition of F transport by Cl. We also suggest that the possibility that aquaporins may be involved in the transmembrane transport of F should be further investigated.  相似文献   

5.
Solution culture-grown, six-month old jack pine (Pinus banksiana Lamb.) seedlings were treated with naphthenic acids (NAs) (150 mg l–1) and sodium chloride (45 mM NaCl) which were applied together or separately to roots for four weeks. NAs aggravated the effects of NaCl in inhibiting stomatal conductance (g s) and root hydraulic conductance (Kr). Naphthenic acids did not affect needle and root electrolyte leakage in the absence of NaCl. However, in plants treated with NaCl, NAs further increased electrolyte leakage from needles and NaCl induced electrolyte leakage from needles, but not from roots. Both NaCl and NAs treatments resulted in a reduction in root respiration. The measured Na+ and Cl concentrations in the shoots for combined NaCl + NAs treatments were lower than in NaCl-only treatments. These decreases were correlated with a reduction in water conductance. The accumulation of Na+ and Cl in shoots was accompanied by an increased in needle electrolyte leakage. However, greater concentrations of Cl compared with Na+ were present in shoots and in the xylem sap suggesting that roots had relatively lower capacity for Cl storage compared with Na+.  相似文献   

6.
Abstract: Black spruce (Picea mariana), white spruce (Picea glauca), and jack pine (Pinus banksiana) seedlings were inoculated with Hebeloma crustuliniforme or Laccaria bicolor and subjected to NaCl and Na2SO4 treatments. The effects of ectomycorrhizas on salt uptake, growth, gas exchange, and needle necrosis varied depending on the tree and fungal species. In jack pine seedlings, ectomycorrhizal (ECM) fungi reduced shoot and root dry weights and in the ECM white spruce, there was a small increase in dry weights. Sodium chloride treatment reduced net photosynthesis and transpiration rates in the three studied tree species. However, NaCl-treated black spruce and jack pine colonized by H. crustuliniforme maintained relatively high photosynthetic and transpiration rates and needle necrosis of NaCl-treated black spruce seedlings was reduced by the ECM fungi. Higher concentrations of Na+ were found in shoots compared with roots of the three examined conifer species. ECM fungi reduced the concentrations of Na+ mainly in the shoots and this reduction was greater in plants treated with NaCl compared with Na2SO4. Shoots contained generally higher concentrations of Cl- compared with roots. In the NaCl-treated black spruce and white spruce, both ECM species significantly reduced Cl- concentrations. Our results point to overall greater phytotoxicity of NaCl compared with Na2SO4 and support our earlier findings which demonstrated beneficial effects of ECM fungi for woody plants exposed to NaCl stress.  相似文献   

7.
Dry weight and nitrogen (N) partitioning of sand-cultured youngjack pine (Pinus banksianaLamb.) seedlings under controlledenvironments were studied 3, 6, 9, 12 and/or 15 weeks afterthe initiation of six dynamic N supply treatments. The supplyof other nutrients was maintained at optimal levels. Total dryweight varied widely among treatments and whole plant totalN concentration ranged from 10 to 32 mg g-1d. wt at most samplingintervals. Whole plant N concentration changed, with time, accordingto three distinct patterns: (1) stable; (2) rapidly increasing;or (3) gradually declining. Regardless of N treatment and samplinginterval, whole plant N concentration was linearly and positivelycorrelated with root, needle and stem N concentration. Dry weightand N weight ratios of needles declined, whereas those of rootsincreased linearly with decreasing whole plant N concentration(r2=0.43 to 0.76) regardless of N regime. Dry matter partitioningto stems, however, was better explained by developmental stagethan by whole plant N concentration. With the decline in internalN status, N was increasingly concentrated in roots at the expenseof needles and stems. These results suggest: (1) dry weightand N partioning may be largely a function of the internal Nstatus of plant rather than root and shoot activities; (2) bothshoot and root specific activities may have a close, positiveassociation with whole plant N concentration; (3) N-partitioningmay be an active process itself and may warrant separate considerationfrom dry weight; and (4) developmental stage may be a significantdeterminant of partitioning, particularly to stems.Copyright1998 Annals of Botany Company Developmental stage; dry weight; internal N status; jack pine; modelling; nitrogen; partitioning;Pinus banksiana; substrate N supply.  相似文献   

8.
Stranglers must undergo a transformation in growth form from epiphyte to tree to become reproductive mature and thus require developmental and/or physiological plasticity to cope with radical changes in their rooting environment. Differences in leaf structure and water relations between epiphytic-phase and free-standing individuals were marked in the five Ficus species examined. Epiphytic Ficus had several-fold higher specific leaf area (cm2 g?1) and 2- to 4-fold lower stomatal densities than conspecific trees. Osmotic potentials at full saturation were, on average, 0-6 MPa higher (less negative) and the bulk modulus of elasticity approximately 50% lower in epiphytic plants than in conspecific trees. This resulted in leaves of epiphytic and tree individuals losing turgor at approximately the same relative water content, hut at a substantially higher leaf water potential in the epiphytic plants. In contrast, differences in leaf structure and water relations between epiphytes and trees of Clusia minor and Coussapoa villosa were small. In greenhouse experiments, alteration of the water and nutrient supply to epiphytic F. tuerckheimmii plants did not lead to significant changes in leaf structure.  相似文献   

9.
A three‐domain pressure–volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to ?5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (?4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m?2s?1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport.  相似文献   

10.
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium.  相似文献   

11.
In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha?1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose. ECM colonization increased with increasing pH in the humus layer from 62% colonization at pH?=?3.5 to 90% at pH?=?6.5 and decreased with increasing amount of extractable phosphorus (P) in the humus. Liming did not affect the frequencies of different ECM morphotypes or dead short root tips, the fine root biomass or necromass. ECM colonization was uncorrelated with needle nutrient concentrations or tree increment. Liming did not significantly affect tree growth. However, nutrient concentrations of current-year needles were affected by prior liming. Ca concentrations in current-year needles increased from approximately 15 mg g?1 in control treatments to more than 30 mg g?1 in limed plots, whereas concentrations of Mn, Al, Fe, and in two stands, B, decreased due to liming. In conclusion, liming with doses up to 15 Mg ha?1 was detectable in stands 35 years after treatment. The liming significantly increased the ECM colonization of Scots pine fine roots, increased the needle nutrient concentration of Ca and decreased the needle concentrations of Mn, Al, and Fe.  相似文献   

12.
Blake TJ  Li J 《Physiologia plantarum》2003,117(4):532-539
Drought adjustments were compared in black spruce ( Picea mariana [Mill] B.S.P), and jack pine ( Pinus banksiana [Lamb.]) by subjecting seedlings to five cycles of dehydration and rehydration. A computer-controlled root misting chamber system, supplied low (−1.5 MPa), moderate (−2.0 MPa), and severe (−2.5 MPa) dehydration, respectively, in cycles 1, 3 and 5. Although cell water relations failed to adjust to chronic dehydration, there was limited osmotic adjustment in black spruce (cycle 3), and water was re-allocated from the apoplast to the symplast in jack pine (cycles 1 and 3). Dehydration postponement was more important than dehydration tolerance. Jack pine was better able to postpone dehydration than black spruce. Specific conductivity, the hydraulic conductivity per unit stem cross-sectional area, was lower in jack pine and slower to decline during chronic dehydration. When specific conductivity was corrected for the greater leaf area in black spruce, the leaf-specific conductivity did not differ in the two species. There was no increase in needle leakage in jack pine and stomata in jack pine seedlings reopened fully after rehydration. Black spruce was more of a 'water spender', and less water stress (−2.0 MPa, cycle 3) was required to lower specific conductivity, compared to jack pine (−2.5 MPa, cycle 5). Leakage from needle membranes increased in black spruce, and stomata failed to reopen after rewatering (cycles 3 and 5). A greater needle area, smaller root system, and a higher specific conductivity lowered the water stress threshold for cavitation in black spruce, which is confined to moister sites in the boreal forest. Jack pine had a larger root system, smaller needle area and lower specific conductivity than black spruce. Because of these static features, jack pine is more drought tolerant and it is often found on sites that are too hot and dry for black spruce.  相似文献   

13.
 Plant responses to saturation vapour pressure deficit (SVPD) were studied by subjecting black spruce [Picea mariana (Mill) B.S.P.] and jack pine seedlings (Pinus banksiana Lamb.) to humid (0.3 – 0.8 kPa) or dry (2.0 – 2.5 kPa SVPD) regimes for 4 weeks using a computer-controlled environmental system to control diurnal variation in SVPD. Dry matter accumulation in needles was not altered by increasing SVPD. However, root growth declined by 60% which increased shoot to root ratio and reduced total seedling dry weight in both black spruce and jack pine. Relative growth rate of jack pine also declined to about half the rate of plants grown under humid conditions. In situ root marking studies showed that the decline in root growth of jack pine under the high SVPD was the result of reduced lateral root initiation, whereas root elongation was unaffected by humidity. A 4-week exposure to dry air increased abscisic acid (ABA) levels in needles, but not roots, of jack pine whereas ABA levels in black spruce were not altered. A short (3-day) exposure failed to increase needle ABA levels in either species. These results suggest that the responses of conifers to dry air were not the result of ABA accumulation. Received: 24 March 1996 / Accepted: 30 May 1996  相似文献   

14.
Goicoechea  N.  Antolín  M.C.  Sánchez-Díaz  M. 《Plant and Soil》1997,192(2):261-268
The objective of this research was to study the effect of drought on nutrient content and leaf water status in alfalfa (Medicago sativa L. cv Aragón) plants inoculated with a mycorrhizal fungus and/or Rhizobium compared with noninoculated ones. The four treatments were: a) plants inoculated with Glomus fasciculatum and Rhizobium meliloti 102 F51 strain, (MR); b) plants inoculated with R. meliloti only (R); c) plants with G. fasciculatum only (M); and d) noninoculated plants (N). Nonmycorrhizal plants were supplemented with phosphorus and nonnodulated ones with nitrogen to achieve similar size and nutrient content in all treatments. Plants were drought stressed using two cycles of moisture stress and recovery. The components of total leaf water potential (osmotic and pressure potentials at full turgor), percentage of apoplastic water volume and the bulk modulus of elasticity of leaf tissue were determined. Macronutrient (N, P, K, Ca, S and Mg) and micronutrient (Co, Mo, Zn, Mn, Cu, Na, Fe and B) content per plant were also measured. Leaves of N and R plants had decreased osmotic potentials and increased pressure potentials at full turgor, with no changes either in the bulk modulus of elasticity or the percentage of apoplastic water upon drought conditions. By contrast, M and MR leaves did not vary in osmotic and turgor potentials under drought stress but had increased apoplastic water volume and cell elasticity (lowering bulk modulus). Drought stress decreased nutrient content of leaves and roots of noninoculated plants. R plants showed a decrease in nutrient content of leaves but maintained some micronutrients in roots. Leaves of M plants were similar in content of nutrients to N plants. However, roots of M and MR plants had significantly lower nutrient content. Results indicate an enhancement of nutrient content in mycorrhizal alfalfa plants during drought that affected leaf water relations during drought stress.  相似文献   

15.
The present study examines the seasonal and diurnal patterns of water management by plant species inhabiting the wall fissures of the ancient castle of Patras. Their water status (water potential), stomatal behaviour (leaf resistance and transpiration rate) as well as tissue water relations (turgor loss point, osmoregulation capability and cell wall elasticity) were recorded in relation to season, daytime and respective environmental conditions. Despite some minor deviations, all five species exhibited a water spending strategy with high diurnal transpiration rates through seasons, limited only by the generally low light intensities prevailing at the northwest-facing vertical walls. Progressive shortage of water during summer resulted in the reduction of transpiration in four species. Diurnal water losses caused a reduction of water potential until midday or dusk, which further decreased with the progress of the dry period. However, predawn water potential remained high through all seasons. The above finding, together with the high transpiration, was unexpected for species growing in a very hostile environment as far as water supply is regarded. It could be partly explained by the recently found ability of all five species to absorb dew from leaf surfaces. However, such plants should also possess mechanisms to take up water efficiently from a rather dry substrate. Indeed, pressure–volume analysis revealed substantial seasonal changes in osmoregulatory capacity and minor changes in cell wall elasticity of leaf tissue. Both changes facilitate (the mechanism differs) water uptake from the wall-fissure substrate during the dry period. Although the relative contribution of the two mechanisms was different, they both allowed plants to maintain turgor and thus growth throughout their growing season.  相似文献   

16.
Abstract. Pressure-volume measurements were made on Artemisia tridentata Nutt. ssp. tridentata samples rehydrated for 0, 1.5, 3, 6 or 24 h. Increasing rehydration time caused a significant increase in osmotic potential at turgor loss, cell elasiticity, and the relative water content at turgor loss, and a significant decrease in pressure potential at saturation. Osmotic potential at saturation was changed significantly by rehydration, but no consistent trend was observed. The symplastic water fraction did not differ significantly among treatments. The increase in the osmotic potential at turgor loss did not correspond with decreasing cell elasticity or synthesis of solutes. Instead, the leaf solute content remained constant suggesting a redistribution of solutes between the symplast and apoplast. Using non-rehydrated samples for pressure-volume analysis introduced errors in estimates of the symplastic water fraction, osmotic potential at full turgor, and the relative water content at turgor loss. These errors are due to uncertainties in the determination of saturated weights.  相似文献   

17.
Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long‐term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well‐watered and two constant levels of long‐term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water‐stressed plants had lower maximum volumetric elastic modulus (εmax), osmotic potential at full turgor ( and at zero turgor ( than those from well‐watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r2 0.88–0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate.  相似文献   

18.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant.  相似文献   

19.
Red-osier dogwood ( Cornus stolonifera Michx, Syn. Cornus sericea ), a species relatively well adapted to moderately saline conditions compared with other boreal species, was used to test the effects of NaCl on plant water relations, cell wall elasticity, and cell wall composition of seedlings. Three month-old seedlings were treated hydroponically with 0, 25, and 50 m m NaCl for 21 days. The osmotic potential at full turgor, osmotic potential at turgor loss, pressure potential at full turgor, and relative water content at turgor loss of red-osier dogwood shoot tissue were not significantly affected by the NaCl treatments. Cell wall elasticity of the shoot tissues did not change following NaCl treatments, suggesting that elastic adjustment did not play a role in the adaptation mechanism. Hemicellulose content of the cell wall increased in salt treated seedlings. The primary sugar found in the cell wall hemicellulose fraction was xylose. In the pectin fraction arabinose and galacturonic acid were the main sugars. Sodium chloride stress did not alter the sugar composition of the hemicellulose fraction; however, NaCl did increase the amount of rhamnose in the pectin fraction. The results of this study suggest that at moderate salinity red-osier dogwood does not make any osmotic or elastic adjustments in the shoot tissue, but some changes in the cell wall composition do occur. These changes could contribute to the decrease in growth recorded in red-osier dogwood during NaCl stress.  相似文献   

20.
 Survival of conifer transplants is often poor on exposed planting sites in the boreal forest. More than one-third of all conifers do not become established. To enhance the competitive ability of jack pine seedlings, seeds were treated with natural plant growth regulators (PGRs; viz., homobrassinolide, salicylic acid, and two polyamines, spermine and spermidine) and growth promotion was studied for 16 days. Homobrassinolide (5 ng l–1), salicylic acid (100 μg l–1) and spermine (10 μg l–1) enhanced elongation growth and elongation rate of whole plant. Homobrassinolide (5 ng l–1) and salicylic acid (100 μg l–1) stimulated root elongation by 38% and 10% respectively while spermine (1000 μg l–1) increased needle growth by 14%. Homobrassinolide stimulated dry weight growth and growth rate. Homobrassinolide recorded over 20% increase in dry matter production, apportioned equally to root and needles, whereas spermine enhanced total dry matter production by almost 10%, mostly by increasing needle weight. Homobrassinolide facilitated nearly 19% increase in growth rate while spermine recorded only a 7% growth promotion. Spermidine inhibited both elongation and dry weight growth at all concentrations. Growth promotion by homobrassinolide, salicylic acid and spermine may be through an acceleration of processes connected to cell elongation, cell division and C allocation and these PGRs showed most promise for the early invigoration and improvement of jack pine seedling growth. Received: 27 August 1997 / Accepted: 8 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号