首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3561篇
  免费   418篇
  国内免费   226篇
  2023年   42篇
  2022年   64篇
  2021年   76篇
  2020年   130篇
  2019年   147篇
  2018年   172篇
  2017年   140篇
  2016年   140篇
  2015年   114篇
  2014年   176篇
  2013年   377篇
  2012年   170篇
  2011年   172篇
  2010年   121篇
  2009年   182篇
  2008年   161篇
  2007年   203篇
  2006年   184篇
  2005年   167篇
  2004年   135篇
  2003年   144篇
  2002年   141篇
  2001年   86篇
  2000年   68篇
  1999年   53篇
  1998年   60篇
  1997年   63篇
  1996年   37篇
  1995年   54篇
  1994年   47篇
  1993年   42篇
  1992年   46篇
  1991年   27篇
  1990年   28篇
  1989年   20篇
  1988年   23篇
  1987年   15篇
  1986年   23篇
  1985年   31篇
  1984年   30篇
  1983年   13篇
  1982年   19篇
  1981年   6篇
  1980年   15篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   10篇
  1975年   4篇
  1974年   4篇
排序方式: 共有4205条查询结果,搜索用时 31 毫秒
1.
2.
Cy-Cl, a cationic near-infrared cyanine dye, readily reacts with hydrogen sulfide (H2S) via nucleophilic thiolation to give dose-dependent ‘turn-off’ fluorescence and colorimetric read-out, allowing selective detection of low levels of H2S in serum and imaging of mitochondrial H2S in living cells.  相似文献   
3.
A cancer microenvironment generates strong hydrogen bond network system by the positive feedback loops supporting cancer complexity and robustness. Such network functions through the AKT locus generating high entropic energy supporting cancer metastatic robustness. Charged lepton particle muon follows the rule of Bragg effect during a collision with hydrogen network in cancer cells. Muon beam dismantles hydrogen bond network in cancer by the muon-catalyzed fusion, leading to apoptosis of cancer cells. Muon induces cumulative energy appearance on the hydrogen bond network in a cancer cell with its fast decay to an electron and two neutrinos. Thus, muon beam, muonic atom, muon neutrino shower, and electrons simultaneously cause fast neutralization of the AKT hydrogen bond network by the conversion of hydrogen into deuterium or helium, inactivating the hydrogen bond networks and inducing failure of cancer complexity and robustness with the disappearance of a malignant phenotype.  相似文献   
4.
Hydrogen sulfide (H2S) is a novel gasotransmitter that plays multiple biological roles in various body systems. In addition to its endogenous production, H2S is produced by bacteria colonizing digestive organs, including the oral cavity. H2S was previously shown to enhance pro-apoptotic effects in cancer cell lines, although the mechanisms involved remain unclear. To properly assess the anti-cancer effects of H2S, however, investigations of apoptotic effects in normal cells are also necessary. The aims of this study were (1) to compare the susceptibility to H2S-induced apoptosis between the oral cancer cell line Ca9-22 and oral keratinocytes that were derived from healthy gingiva, and (2) to identify candidate genes involved in the induction of apoptosis by H2S. The susceptibility to H2S-induced apoptosis in Ca9-22 cells was significantly higher than that in keratinocytes. H2S exposure in Ca9-22 cells, but not keratinocytes, enhanced the expression of pleckstrin homology-like domain, family A, member 1 (PHLDA1), which was identified through a differential display method. In addition, PHLDA1 expression increased during actinomycin D-induced apoptosis in Ca9-22 cells. Knockdown of PHLDA1 expression by small interfering RNA in Ca9-22 cells led to expression of active caspase 3, thus indicating apoptosis induction. The tongue cancer cell line SCC-25, which expresses PHLDA1 at a high level, showed similar effects. Our data indicate that H2S is an anti-cancer compound that may contribute to the low incidence of oral cancer. Furthermore, we demonstrated the role of PHLDA1 as an apoptosis suppressor.  相似文献   
5.
Cylindrical polyethylene enclosures 3 m in length and 1 m in diameter reaching from the surface to the bottom were constructed in an acid (pH=3.1) lake on a coal surface mine in southern Illinois. Wheat straw was added to the enclosures to test the effects of dissimilatory sulfate reduction on water chemistry. Added straw increased sulfide concentrations, raised pH to 6.5, reduced O2 and increased acid neutralizing capacity of the enclosed water columns when compared with a control enclosure and with the open lake. Generation of acid neutralizing capacity exceeded the standing stock of sulfide indicating that sulfide was removed either by precipitation of FeS or outgassing of H2S. The pH and acid neutralizing capacity within the enclosures eventually returned to the level of the surrounding lake because of water exchange around the enclosure walls. Our results show that additions of organic matter to acid surface mine lakes result in the generation of acid neutralizing capacity.  相似文献   
6.
To study the in vivo short-term effect of hydrogen peroxide on plant metabolism, 2 mol m?3 3-amino-1,2,4-triazole, a catalase inhibitor, was applied through the transpiration stream to Pisum sativum seedlings, and gas exchange characteristics, ascorbate peroxidase, glutathione reductase and catalase activities, and levels of hydrogen peroxide and formate were determined. Carbon dioxide assimilation rates were inhibited after the addition of aminotriazole: photorespiratory conditions exacerbated this inhibition. Carbon dioxide response curves showed that aminotriazole reduced both the RuBP regeneration rate and the efficiency of the carboxylation reaction of Rubisco. Catalase activity was completely inhibited 200 min after the application of this inhibitor, but no concomitant increase in H2O2 concentration was found. Under enhanced photorespiratory conditions, H2O2 concentrations increased. This suggests that under normal environmental conditions hydrogen peroxide is metabolized via alternative mechanisms. The aminotriazole treatment had no effect on the ascotbate peroxidase and glutathione reductase activities, but caused a substantial increase in the formate pool size. These results suggest that hydrogen peroxide is metabolized by reacting with glyoxylate to produce formate and CO2. The increased production of formate may reduce the flow of carbon through the normal photorespiratory pathway and may also be used anaplerotically as a precursor of products of 1-C metabolism other than serine. This would prevent the return of photorespiratory carbon to the RPP pathway, leading to a smaller RuBP pool size which would in turn result in a decrease in carboxylation conductance (carboxylation efficiency) and regeneration rate of RuBP.  相似文献   
7.
8.
Gracilaria conferta (Schousboe ex Montagne) J. et G. Feldmann responded with an oxidative burst and rapid increases in respiration and halogenating activity when agar, agarose, or the agarose degradation products neoagarotetraose and neoagarohexaose were added to the growth medium. In contrast, carrageenan, oligocarrageenans, neoagarobiose, l-galactose, d-galactose, and several other mono- and oligosaccharides did not have any effect. Sixfold increases in respiration were observed 3 min after addition of neoagarohexaose. The response could only be induced in species of the genera Gracilaria and Gracilariopsis. Neoagarohexaose also elicited a release of hydrogen peroxide in less than 15 min, resulting in an immediate increase in algal brominating activity. Bleached thallus tips appeared a few hours after the addition of neoagarohexaose. This effect was dependent on the release of hydrogen peroxide and exposure to light. Exposure to light and oligosaccharide elicitors increased the production of reactive oxygen species, which reached destructive concentrations when both mechanisms were simultaneously active. Concentrations of 0.1 to 3.3 μM agarose or agars were sufficient to trigger an increase in respiration, an oxidative burst response, and tip bleaching. However, higher concentrations of neoagarohexaose and neoagarotetraose were necessary to elicit the responses, indicating that the alga is more sensitive to oligoagars with degrees of biose-polymerization > 3. The extremely short reaction time and high specificity indicate that intermediates of agar degradation are recognized by Gracilaria as messengers when microbial degradation of its cell wall occurs. The physiological responses may represent the early stages of algal defense mechanisms involved in repression of pathogen ingress.  相似文献   
9.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   
10.
《Free radical research》2013,47(9):971-982
Abstract

Recent basic and clinical research has revealed that hydrogen is an important physiological regulatory factor with antioxidant, anti-inflammatory and anti-apoptotic protective effects on cells and organs. Therapeutic hydrogen has been applied by different delivery methods including straightforward inhalation, drinking hydrogen dissolved in water and injection with hydrogen-saturated saline. This review summarizes currently available data regarding the protective role of hydrogen, provides an outline of recent advances in research on the use of hydrogen as a therapeutic medical gas in diverse models of disease and discusses the feasibility of hydrogen as a therapeutic strategy. It is not an overstatement to say that hydrogen's impact on therapeutic and preventive medicine could be enormous in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号