首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5069篇
  免费   451篇
  国内免费   311篇
  2024年   8篇
  2023年   147篇
  2022年   159篇
  2021年   228篇
  2020年   250篇
  2019年   336篇
  2018年   295篇
  2017年   213篇
  2016年   251篇
  2015年   268篇
  2014年   433篇
  2013年   569篇
  2012年   230篇
  2011年   259篇
  2010年   182篇
  2009年   192篇
  2008年   214篇
  2007年   210篇
  2006年   196篇
  2005年   162篇
  2004年   141篇
  2003年   114篇
  2002年   120篇
  2001年   80篇
  2000年   46篇
  1999年   62篇
  1998年   59篇
  1997年   37篇
  1996年   23篇
  1995年   34篇
  1994年   36篇
  1993年   28篇
  1992年   15篇
  1991年   23篇
  1990年   14篇
  1989年   16篇
  1988年   7篇
  1987年   13篇
  1986年   14篇
  1985年   14篇
  1984年   24篇
  1983年   20篇
  1982年   16篇
  1981年   10篇
  1980年   17篇
  1979年   11篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1974年   6篇
排序方式: 共有5831条查询结果,搜索用时 15 毫秒
1.
2.
In our efforts to further investigate the impact of the spacer and membrane anchor to the neuroprotective activities, a series of bivalent compounds that contain cholesterol and extended spacers were designed, synthesized and biologically characterized. Our results support previous studies that incorporation of a piperazine ring into the spacer significantly improved the protective potency of bivalent compounds in MC65 cell model. Spacer length beyond 21 atoms does not add further benefits with 21MO being the most potent one with an EC50 of 81.86 ± 11.91 nM. Our results also demonstrated that bivalent compound 21MO suppressed the production of mitochondria reactive oxygen species. Furthermore, our results confirmed that both of the spacer and membrane anchor moiety are essential to metal binding. Collectively, the results provide further evidence and information to guide optimization of such bivalent compounds as potential neuroprotectants for Alzheimer’s disease.  相似文献   
3.
Herein we describe the design of a novel series of ATP competitive B-Raf inhibitors via structure-based methods. These 3-N-methylquinazoline-4(3H)-one based inhibitors exhibit both excellent cellular potency and striking B-Raf selectivity. Optimization led to the identification of compound 16, a potent, selective and orally available agent with excellent pharmacokinetic properties and robust tumor growth inhibition in xenograft studies. Our work also demonstrates that by replacing an aryl amide with an aryl sulfonamide, a multikinase inhibitor such as AZ-628, can be converted to a selective B-Raf inhibitor, a finding that should have broad application in kinase drug discovery.  相似文献   
4.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   
5.
In this study, the chemical features of dendritic mesoporous silica nanoparticles (DMSNs) provided the opportunity to design a nanostructure with the capability to intelligently transport the payload to the tumor cells. In this regard, doxorubicin (DOX)-encapsulated DMSNs was electrostatically surface-coated with polycarboxylic acid dextran (PCAD) to provide biocompatible dextran-capped DMSNs (PCAD-DMSN@DOX) with controlled pH-dependent drug release. Moreover, a RNA aptamer against a cancer stem cell (CSC) marker, CD133 was covalently attached to the carboxyl groups of DEX to produce a CD133-PCAD-DMSN@DOX. Then, the fabricated nanosystem was utilized to efficiently deliver DOX to CD133+ colorectal cancer cells (HT29). The in vitro evaluation in terms of cellular uptake and cytotoxicity demonstrated that the CD133-PCAD-DMSN@DOX specifically targets HT29 as a CD133 overexpressed cancer cells confirmed by flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. The potentially promising intelligent-targeted platform suggests that targeted dextran-capped DMSNs may find impressive application in cancer therapy.  相似文献   
6.
Therapeutic proteins are utilized in a variety of clinical applications, but side effects and rapid in vivo clearance still present hurdles. An approach that addresses both drawbacks is protein encapsulation within in a polymeric nanoparticle, which is effective but introduces the additional challenge of destabilizing the nanoparticle shell in clinically relevant locations. This study examined the effects of crosslinking self-assembled poly(l -lysine)-grafted-poly(ethylene glycol) nanoparticles with redox-responsive 3,3′-dithiobis(sulfosuccinimidyl propionate) (DTSSP) to achieve nanoparticle destabilization in a reductive environment. The polymer-protein nanoparticles (DTSSP NPs) were formed through electrostatic self-assembly and crosslinked with DTSSP, which contains a glutathione-reducible disulfide. As glutathione is upregulated in various cancers, DTSSP NPs could display destabilization within cancer cells. A library of DTSSP NPs was formed with varying copolymer to protein (C:P) and crosslinker to protein (X:P) mass ratios and characterized by size and encapsulation efficiency. DTSSP NPs with a 7:1 C:P ratio and 2:1 X:P ratio were further characterized by stability in the presence proteases and reducing agents. DTSSP NPs fully encapsulated the model protein and displayed 81% protein release when incubated with 5 mM dithiothreitol for 12 hr. This study contributes to understanding stimulus-responsive crosslinking of polymeric nanoparticles and could be foundational to clinical administration of therapeutic proteins.  相似文献   
7.
基于各学科信息作出安全性、有效性和质量可控性方面的综合评价是新药研究评价的灵魂,是一个多学科、多组织参与的综合决策过程。根据新药评价研究的实际工作经验,介绍一个新药临床试验综合评价的逻辑性、结构性的工作思考模式,有助于将不同专业的技术信息和技术结论有机整合,作出科学决策。  相似文献   
8.
S100A13 is S100 family of EF-hand-containing calcium-binding protein involved in the secretion of some growth factors and pro-inflammatory cytokines lacking signal peptides. The involvement of S100A13 in cancer progression and inflammatory diseases has been reported. In this study, structures generated during atomistic molecular dynamics simulation were studied. Dynamical network analysis data revealed that native inter-protomer communication network driven principally by vdW interaction (~550 kj/mol) is altered (Receptor for advanced glycation end products (RAGE) C2- and Fibroblast growth factor (FGF)-1-bound S100A13) or completely abolished (interleukin-1 (IL1)-α- and C2A-p40Syt1-bound S100A13) in protein-bound S100A13 homodimer. Bulk water density (weighted atomic density) around exposed S100A13 homodimer surface explored tends to follow the dynamical network lead as S100A13 homodimer appeared densely solvated in C2A-p40Syt1- and IL1)-α-bound states but not in RAGE C2- and FGF-1-bound biosystems. Furthermore, projection of radius of gyration and root mean square deviation (from native structure) variables of the generated structures along the 3D-free energy surface showed anti-parallel β-sheet proximal to Ca2+-binding loops-I/II in most metastable complexes retrieved from energy minima state with strong indications for β-sheet network formation during protein binding. Interaction between S100A13 homodimer and ligand–proteins may be dictated by the strength of vdW and electrostatic interaction with possible involvement of bulk water desolvation in some complexes. All these results strongly suggest that disruption of multiprotein receptor complex can be achieved by designing specific compounds targeting a specific aspect of S100A13/protein interaction; such drugs may have clinical usefulness in blocking angiogenesis, reversing cell proliferation and attenuating inflammatory processes.  相似文献   
9.
10.
Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (KrasG12DPdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70–75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号