首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To examine the relationship between glycoprotein Ib and other proteins in the platelet membrane and the interaction of this protein with thrombin, platelets were crosslinked by two cleavable reagents, SADP (N-succinimidyl(4-azidophenyldithio)propionate) and DTSSP (3,3′-dithiobis(sulfosuccinimidyl propionate)). Two-dimensional, unreduced-reduced sodium dodecyl sulphate (SDS)-polyacrylamide electrophoresis and staining by silver or wheat germ agglutinin-conjugated peroxidase, after protein transfer to nitrocellulose, demonstrated that SADP intramolecularly crosslinked glycoprotein Ib and formed intermolecular complexes of glycoprotein IIb and some high molecular weight proteins. DTSSP intermolecularly crosslinked glycoprotein Ib, glycoprotein IIb, and other high molecular weight proteins. With a low concentration of 125I-labeled TLCK-thrombin (6 nM), crosslinking with SADP yielded a 200 000 Da complex containing radioactive-labeled thrombin, and high TLCK-thrombin concentration (0.1 μM) gave the complex and a 167 000 band. α- and TLCK-thrombin crosslinking with DTSSP also yielded the 200 000 complex, with the remaining radioactivity in a band corresponding to a highly crosslinked complex. The 200 000 complex formed by reaction with SADP or DTSSP was markedly reduced by preincubation of platelets with excess unlabeled TLCK-thrombin and had a pI similar to glycoprotein Il. These results suggest that glycoprotein Il is one of the proteins composing the high affinity receptor for thrombin.  相似文献   

2.
The lysine-specific crosslinker 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP) is commonly used in the structural characterization of proteins by chemical crosslinking and mass spectrometry and we here describe an efficient two-step LC-MALDI-TOF/TOF procedure to detect crosslinked peptides. First MS data are acquired, and the properties of isotope-labeled DTSSP are used in data analysis to identify candidate crosslinks. MSMS data are then acquired for a restricted number of precursor ions per spot for final crosslink identification. We show that the thiol-catalyzed exchange between crosslinked peptides, which is due to the disulfide bond in DTSSP and known to possibly obscure data, can be precisely quantified using isotope-labeled DTSSP. Crosslinked peptides are recognized as 8 Da doublet peaks and a new isotopic peak with twice the intensity appears in the middle of the doublet as a consequence of the thiol-exchange. False-positive crosslinks, formed exclusively by thiol-exchange, yield a 1:2:1 isotope pattern, whereas true crosslinks, formed by two lysine residues within crosslinkable distance in the native protein structure, yield a 1:0:1 isotope pattern. Peaks with a 1:X:1 isotope pattern, where 0 < X < 2, can be trusted as true crosslinks, with a defined proportion of the signal [2X/(2 + X)] being noise from the thiol-exchange. The thiol-exchange was correlated with the protein cysteine content and was minimized by shortening the trypsin incubation time, and for two molecular chaperone proteins with known structure all crosslinks fitted well to the structure data. The thiol-exchange can thus be controlled and isotope-labeled DTSSP safely used to detect true crosslinks between lysine residues in proteins.  相似文献   

3.
The aim of this study was to generate a new type of nanoparticles made of quaternized chitosan (QCS) and poly (aspartic acid) and to evaluate their potential for the association and delivery of protein drugs. QCS and poly (aspartic acid) were processed to nanoparticles via the ionotropic gelation technique. The size, polydispersity, zeta potential, and morphology of the nanoparticles were characterized. Entrapment studies of the nanoparticles were conducted using bovine serum albumin (BSA) as a model protein. The effects of the pH value of nanoparticles with different QCS/poly (aspartic acid) ratios, QCS molecular weight (MW), poly (aspartic acid) concentration, and BSA concentration on the nanoparticle size, the nanoparticle yield, and BSA encapsulation were studied in detail. Suitably pH value of nanoparticles with different QCS/poly (aspartic acid) ratios, moderate QCS MW, optimal concentration ratio of poly (aspartic acid), and QCS favored more nanoparticles formed and higher BSA encapsulation efficiency. The release of BSA from nanoparticles was pH-dependent. Fast release occurred in 0.1 M phosphate buffer solution (PBS, pH 7.4), while the release was slow in 0.1 M HCl (pH 1.2). The results showed that the new QCS/poly (aspartic acid) nanoparticles have a promising potential in protein delivery system.  相似文献   

4.
Intracellular delivery of nucleic acids to mammalian cells using polyplex nanoparticles (NPs) remains a challenge both in vitro and in vivo, with transfections often suffering from variable efficacy. To improve reproducibility and efficacy of transfections in vitro using a next-generation polyplex transfection material poly(beta-amino ester)s (PBAEs), the influence of multiple variables in the preparation of these NPs on their transfection efficacy was explored. The results indicate that even though PBAE/pDNA polyplex NPs are formed by the self-assembly of polyelectrolytes, their transfection is not affected by the manner in which the components are mixed, facilitating self-assembly in a single step, but timing for self-assembly of 5–20 min is optimal. In addition, even though the biomaterials are biodegradable in water, their efficacy is not affected by up to eight freeze-thaw cycles of the polymer. It was found that there is a greater stability of nucleic acid-complexed polymer as a polyplex nanoparticle compared with free polymer. Finally, by exploring multiple buffer systems, it was identified that utilization of divalent cation magnesium or calcium acetate buffers at pH 5.0 is optimal for transfection using these polymeric materials, boosting transfection several folds compared with monovalent cations. Together, these results can improve the reproducibility and efficacy of PBAE and similar polyplex nanoparticle transfections and improve the robustness of using these biomaterials for bioengineering and biotechnology applications.  相似文献   

5.
We have developed a new methodology to attain treatment-actuated modifications in a tumor microenvironment by utilizing synergistic activity between two potential anticancer drugs. Dual drug delivery of curcumin (CUR) and 7-ethyl-10-hydroxycamptothecin (SN38) exhibits a great anti-cancer potential, as CUR enhances the effect of SN38 treatment of human cervical cells by providing microenvironment stability. However, encapsulation of CUR and SN38 obsessed by polyethylene glycol (PEG) and poly (lactic-co-glycolic acid (PLGA)-based nanoparticles (NPs) is incompetent owing to unsuitability between the binary free CUR and SN38 moieties and the polymeric system. Now, we display that SN38 can be prepared by hydrophobic covering of the drug centers with dioleoylphosphatidic acid (DOPA). The DOPA-covered SN38 can be co-encapsulated in PEG-PLGA NPs alongside CUR to stimulate excellent anticancer property. The occurrence of the SN38 suggestively enhanced the encapsulations of CUR into PEG-PLGA NPs (CUR-SN38 NPs). Formation of the nanocomposite (CUR-SN38 NPs) was confirmed by FTIR and X-ray spectroscopic techniques. Further, the morphology of CUR NPs, SN39 NPs, and CUR-SN38 NPs and nanoparticle size was examined by transmission microscopy (TEM), respectively. Furthermore CUR-SN38 NPs induced significant apoptosis in human cervical HeLa cancer cells in vitro. The morphological observation and apoptosis were confirmed by the various biochemical assayes such as acridine orange-ethidium bromide (AO-EB), Nuclear Staining and Annexin V-FITC). The results suggest that CUR-SN38 NPs are one of the promising nursing cares for human cervical cancer therapeutic candidates worthy of further investigations.  相似文献   

6.
In this study, 5-methylmellein (5-MM) loaded bovine serum albumin nanoparticles (BSA NPs) were developed using desolvation technique. The developed nanoparticles were characterized for their mean particle size, polydispersity, zeta potential, loading efficiency, X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and release profile. The developed nanoparticles were spherical in shape under transmission electron microscopy (TEM) and atomic force microscopy (AFM). The developed 5-MM loaded BSA NPs demonstrated a mean particle size with a diameter of 154.95?±?4.44?nm. The results from XRD and DSC studies demonstrated that the crystal state of the 5-MM was converted to an amorphous state in polymeric matrix. The encapsulation and loading efficiency was found to be 73.26?±?4.48% and 7.09?±?0.43%. The in vitro cytotoxicity in human prostate cancer cell line (PC-3), human colon cancer cells (HCT-116) and human breast adenocarcinoma cell line (MCF-7) cells demonstrated enhanced cytotoxicity of 5-MM BSA NPs as compared to native 5-MM after 72-h treatment. The enhancement in cytotoxicity of 5-MM BSA NPs was also supported by increase in cellular apoptosis, mitochondrial membrane potential loss and generation of high reactive oxygen species (ROS). In conclusion, these findings collectively indicated that BSA nanoparticles may serve as promising drug delivery system for improving the efficacy of 5-methylmellein.  相似文献   

7.
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug‐loaded PLGA‐lecithin‐PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti‐nucleolin aptamers for site‐specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X‐ray photoelectron spectroscopy (XPS). The drug‐loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF‐7 and GI‐1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug‐loading studies indicated that under the same drug loading, the aptamer‐targeted NPs show enhanced cancer killing effect compared to the corresponding non‐targeted NPs. In addition, the PLGA‐lecithin‐PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer‐PLGA‐lecithin‐PEG NPs are potential carrier candidates for differential targeted drug delivery. Biotechnol. Bioeng. 2012; 109: 2920–2931. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Water-soluble chitosan (WSC)-poly(l-aspartic acid) (PASP)-polyethylene glycol (PEG) nanoparticles (CPP nanoparticles) were prepared spontaneously under quite mild conditions by polyelectrolyte complexation. These nanoparticles were well dispersed and stable in aqueous solution, and their physicochemical properties were characterized by turbidity, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and zeta potential. PEG was chosen to modify WSC-PASP nanoparticles to make a protein-protective agent. Investigation on the encapsulation efficiency and loading capacity of the bovine serum albumin (BSA)-loaded CPP nanoparticles was also conducted. Encapsulation efficiency was obviously decreased with the increase of initial BSA concentration. Furthermore, its in vitro release characteristics were evaluated at pH 1.2, 2.5, and 7.4. In vitro release showed that these nanoparticles provided an initial burst release, followed by a slowly sustained release for more than 24 h. The BSA released from CPP nanoparticles showed no significant conformational change compared with native BSA, which is superior to the BSA released from nanoparticles without PEG. A cell viability study suggested that the nanoparticles had good biocompatibility. This nanoparticle system was considered promising as an advanced drug delivery system for the peptide and protein drug delivery.  相似文献   

10.
Biodegradable and biocompatible polymers play a key role to provide a solution for sustained chemotherapy, when engineered to nanostructure. One such effort has been put forward to engineer self-assembled poly(caprolactone)-grafted dextran (PGD) core–shell micellar vehicle for anticancer drug (paclitaxel) and presented in this study. Paclitaxel-loaded PGD nanoparticles (NPs) were prepared by a modified oil/water emulsion method and characterized by laser light scattering, atomic force microscopy, and zeta potential measurements. The effects of the copolymeric compositions of PGD NPs on drug encapsulation efficiency, in vitro drug release, cellular uptake, and cell viability of NP formulation with paclitaxel were investigated. The drug encapsulation efficiency was determined spectrophotometrically, and in vitro drug release was estimated using dialysis bag. Human gastric cancer cell line (SNU-638) were used to image and measure the cellular uptake of fluorescent PGD NPs. Cancer cell viability of the drug-loaded PGD NPs was measured by crystal violet staining method. From the results obtained on various aspects, we inferred that the above formulated drug-loaded PGD NPs have significant drug encapsulation efficiency, cellular uptake, and the cancer cell mortality.  相似文献   

11.
A novel drug delivery system for the treatment of brain tumors was formulated by methotrexate (MTX)-loaded polymeric nanoparticles (NPs) based on Glycol chitosan (GCS) and Dextran sulfate (DS). The physicochemical properties of resulting particles were investigated, evidencing the contribution of these nanoparticles for brain targeting. In vitro release of MTX was also evaluated. The GCS-DS nanoparticles have been developed based on the modulation of ratio show promise as a system for controlled delivery of the drug to the brain.  相似文献   

12.
Moore-Hoon ML  Turner RJ 《Biochemistry》2000,39(13):3718-3724
The oligomeric state of the secretory Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) in rat parotid plasma membranes was studied using the reversible chemical cross-linker DTSSP [3, 3'-dithiobis(sulfosuccinimidyl propionate)]. The monomeric apparent molecular mass of NKCC1 is approximately 170 kDa. However, we show here that this protein migrates as a approximately 355 kDa complex on SDS-PAGE gels after membrane treatment with DTSSP, indicating that NKCC1 exists as an oligomer in the plasma membrane. The stability of this oligomer is such that it is not disrupted by solubilization of the membrane by low concentrations of the nonionic detergent Triton X-100 (0.3%) or the mild ionic detergent deoxycholate (20 mM); however, higher concentrations of Triton X-100 or treatment with the denaturing detergent SDS do result in destabilization of the NKCC1 complex. In additional experiments, we immunoprecipitated the 355 kDa cross-linked complex from biotinylated membranes, then cleaved the cross-linking bonds and analyzed the resulting components of the NKCC1 oligomer by avidin blotting, silver staining, and 2D electrophoresis. In these studies, we were unable to detect the presence of any proteins other than NKCC1 itself in the 355 kDa oligomer, suggesting that this complex is an NKCC1 dimer. Strong evidence for this conclusion was provided by a quantitative analysis of the molecular sizes of oligomers formed by full-length NKCC1 and an N-terminally truncated version of NKCC1 expressed in HEK293 cells. Taken together, our data provide convincing evidence that the dominant structural unit of NKCC1 in the plasma membrane is a homodimer.  相似文献   

13.
The membrane impermeant protein cross-linker 3,3'-dithiobissulfosuccinimidyl propionate (DTSSP) is a well-known inhibitor of human erythrocyte band 3-mediated inorganic anion transport. We observed that DTSSP is also a potent inhibitor of reduced folate/methotrexate transport in human CCRF-CEM leukemia cells. An interaction of DTSSP with the reduced folate/MTX is substantiated by findings that: (a) like MTX transport itself, the concentration of DTSSP required for half-maximal inhibition of [3H]methotrexate transport varied substantially with the anionic composition of the external medium. In a saline buffer and an anion-deficient buffer the I50 values were 7 and 1 microM, respectively; (b) saturation of the carrier with 1-5 microM methotrexate completely protected the transport system from interaction by DTSSP; (c) methotrexate transport activity in DTSSP-treated cells could be restored after cleavage of the disulfide bond in DTSSP under mild reducing conditions; and (d) pretreatment of cells with DTSSP reduced the incorporation of [3H]methotrexate after labeling with an N-hydroxysuccinimide ester of [3H]methotrexate (NHS-MTX), another potent inhibitor of methotrexate transport. Comparison of DTSSP- and NHS-MTX-induced inhibition of methotrexate transport showed that DTSSP inhibition, in contrast to NHS-MTX inhibition, was (a) less potent, (b) dependent on buffer conditions, (c) reversible by reducing agents, and (d) required only a very low molar ratio of methotrexate over DTSSP to afford maximal protection.  相似文献   

14.
Gvili K  Benny O  Danino D  Machluf M 《Biopolymers》2007,85(5-6):379-391
When designing a nonviral gene delivery system based on polymeric nanoparticles (NPs), it is important to keep in mind obstacles associated with future clinical applications. Simplifying the procedure of NPs production and taking toxicity into account are the most important issues that need to be addressed. Toxicity concerns in clinical trials may be raised when using additives such as cationic polymers/lipids, buffering reagents, and proteins. Therefore, the aim of this study was to simplify the formulation of poly (lactide-co-glycolide) acid NPs by shortening steps such as sonication time and by avoiding the use of additives while preserving its efficiency. NPs (300 nm) were formulated using a modified w/o/w technique with DNA entrapment efficiency of 80%. Once achieving such NPs, formulation parameters such as DNA loading, release kinetics, DNA integrity and bioactivity, uptake by cells, and toxicity were addressed. The NPs were readily taken by several cell lines and were localized mostly in their endo-lysosomal compartments. The NPs did not affect cells viability. Most importantly, transfection studies in COS-7 and Cf2th cells resulted with a 250-fold protein expression levels when compared with the control. These expression levels are higher than ones achieved with more complicated NPs systems, demonstrating the efficiency of our simplified NPs for gene delivery.  相似文献   

15.
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called “electrostatic sponge” structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.  相似文献   

16.
The study was to develop paclitaxel-loaded formulations using a novel type of self-assembled nanoparticles that was composed of block copolymers synthesized from poly(gamma-glutamic acid) and poly(lactide) via a simple coupling reaction. The nanoparticles (the NPs) were prepared with various feed weight ratios of paclitaxel to block copolymer (the P/BC ratio). The morphology of all prepared nanoparticles was spherical and the surfaces were smooth. Increasing the P/BC ratio significantly increased the drug loading content of the prepared nanoparticles, but remarkably reduced the drug loading efficiency. The release rate of paclitaxel from the NPs decreased significantly as the P/BC ratio increased. For the potential of targeting liver cancer cells, galactosamine was further conjugated on the prepared nanoparticles (the Gal-NPs) as a targeting moiety. It was found that the activity in inhibiting the growth of HepG2 cells (a liver cancer cell line) by the Gal-NPs was comparable to that of a clinically available paclitaxel formulation, while the NPs displayed a significantly less activity. This may be attributed to the fact that the Gal-NPs had a specific interaction with HepG2 cells via ligand-receptor recognition. Cells treated with distinct paclitaxel formulations resulted in arrest in the G2/M phase. The arrest of cells in the G2/M phase was highly suggestive of interference by paclitaxel with spindle formation and was consistent with the morphological findings presented herein. In conclusion, the active targeting nature of the Gal-NPs prepared in the study may be used as a potential drug delivery system for the targeted delivery to liver cancers.  相似文献   

17.
This investigation aimed to develop nimesulide (NMS)-loaded poly(lactic-co-glycolic acid) (PLGA)-based nanoparticulate formulations as a biodegradable polymeric drug carrier to treat rheumatoid arthritis. Polymeric nanoparticles (NPs) were prepared with two different nonionic surfactants, vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) and poly(vinyl alcohol) (PVA), using an ultrasonication solvent evaporation technique. Nine batches were formulated for each surfactant using a 32 factorial design for optimal concentration of the emulsifying agents, 0.03–0.09% for vitamin E TPGS and 2–4% for PVA. The surfactant percentage and the drug/polymer ratio (1:10, 1:15, 1:20) of the NMS-loaded NPs were investigated based on four responses: encapsulation efficiency, particle size, the polydispersity index, and the surface charge. The response surface plots and linearity curves indicated a relationship between the experiment’s responses and a set of independent variables. The NPs produced with both surfactants exhibited a negative surface charge, and scanning electron micrographs revealed that all of the NPs were spherical in shape. A narrower size distribution and higher drug loadings were achieved in PVA-emulsified PLGA NPs than in the vitamin E TPGS emulsified. Decreasing amounts of both nonionic surfactants resulted in a reduction in the emulsion’s viscosity, which led to a decrease in the particle size of NPs. According to the ANOVA results obtained in this present research, vitamin E TPGS exhibited the best correlation between the independent variables, namely drug/polymer ratio and the surfactant percentage, and the dependent variables (encapsulation efficiency R2 = 0.9603, particle size R2 = 0.9965, size distribution R2 = 0.9899, and surface charge R2 = 0.8969) compared with PVA.KEY WORDS: ANOVA, factorial design, nanoparticles, nimesulide, PLGA, PVA, vitamin E TPGS  相似文献   

18.
雷公藤甲素(triptolide,TPL)是传统中药雷公藤的主要活性成分,具有抗炎、抗肿瘤活性,但其毒副作用限制了临床上的广泛使用。为了探讨以TPGS-b-(PCL-ran-PGA)为载体制备的TPGS-b-(PCL-ran-PGA)/TPL纳米粒的表征和体外对宫颈癌细胞的抑制作用,采用乳化/溶剂挥发法,优化TPGS-b-(PCL-ran-PGA)与TPL比例,制备TPGS-b-(PCL-ran-PGA)/TPL纳米粒,对纳米粒进行表征,包括粒径大小、ζ电位、包封率、累积释放率,用MTS法体外研究游离型TPL和TPGS-b-(PCL-ran-PGA)/TPL纳米粒对宫颈癌细胞半数抑制浓度(IC50),用克隆形成实验分析TPGS-b-(PCL-ran-PGA)/TPL纳米粒对宫颈癌细胞HeLa的抑制作用,用流式细胞仪分析纳米粒对HeLa细胞凋亡的影响。结果显示:当TPGS-b-(PCL-ran-PGA)与TPL为50∶1时制备的纳米粒粒径为(95.3±5.2)nm,zeta电位为(-12.2±0.9)mV,其累积释放曲线呈双相分布,TPGS-b-(PCL-ran-PGA)纳米粒对HeLa细胞在24、48和72 h的IC50(2.8、1.8、0.9 μg·L-1)远远低于游离型TPL(P<0.01),克隆形成实验证明纳米粒能显著抑制肿瘤细胞生长,并能显著诱导HeLa细胞凋亡。研究结果表明,TPGS-b-(PCL-ran-PGA)/TPL纳米粒能抑制宫颈癌细胞HeLa的生长,其作用主要通过TPL和TPGS共同诱导细胞凋亡,可以作为抗宫颈癌等肿瘤的候选药物。  相似文献   

19.
Mineralo-protein nanoparticles (NPs) formed spontaneously in the body have been associated with ectopic calcifications seen in atherosclerosis, chronic degenerative diseases, and kidney stone formation. Synthetic NPs are also known to become coated with proteins when they come in contact with body fluids. Identifying the proteins found in NPs should help unravel how NPs are formed in the body and how NPs in general, be they synthetic or naturally formed, interact within the body. Here, we developed a proteomic approach based on liquid chromatography (LC) and tandem mass spectrometry (MS/MS) to determine the protein composition of carbonate-apatite NPs derived from human body fluids (serum, urine, cerebrospinal fluid, ascites, pleural effusion, and synovial fluid). LC–MS/MS provided not only an efficient and comprehensive determination of the protein constituents, but also a semiquantitative ranking of the identified proteins. Notably, the identified NP proteins mirrored the protein composition of the contacting body fluids, with albumin, fetuin-A, complement C3, α-1-antitrypsin, prothrombin, and apolipoproteins A1 and B-100 being consistently associated with the particles. Since several coagulation factors, calcification inhibitors, complement proteins, immune regulators, protease inhibitors, and lipid/molecule carriers can all become NP constituents, our results suggest that mineralo-protein complexes may interface with distinct biochemical pathways in the body depending on their protein composition. We propose that LC–MS/MS be used to characterize proteins found in both synthetic and natural NPs.  相似文献   

20.
The dramatic expansion of nanotechnology applications, particularly the advent of nanomaterials and nanoparticles (NPs) into the consumer economy, have led to heightened awareness of their potential health risks. This study examines the impact of several NPs upon membrane-induced aggregation and bilayer interactions of the human Islet amyloid polypeptide (hIAPP). We report that several NPs – polymeric NPs, TiO2 NPs, and Au NPs displaying coating layers exhibiting different electrostatic charges - did not significantly interfere with the fibrillation process and fibril morphology of hIAPP, both in buffer or in biomimetic DMPC:DMPG vesicle solutions. Spectroscopic and microscopic analyses suggest, in fact, that the NPs promoted membrane-induced fibrillation. Importantly, we find that all the NPs examined, regardless of composition or surface properties, gave rise to more pronounced, synergistic bilayer interactions when co-incubated with hIAPP. NP-enhanced bilayer interactions of hIAPP might point to possible toxicity and pathogenicity risks of amyloidogenic peptides in the presence of NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号