首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   11篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A2 superfamily (PLA2) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
2.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   
3.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   
4.
Recent studies have shown that low concentrations of H2O2 are produced endogenously by nonphagocytes after wounding. We observed that H2O2 at such concentrations can stimulate proliferation as well as migration of keratinocytes in a scratch-wound assay. Both wounding and H2O2 can induce phosphorylation of ERK1/2 via EGFR, but the activation of ERK1/2 by H2O2 is more sustained and can last more than 8 h. Sustained ERK1/2 activation is required for the increased proliferation and migration induced by H2O2. The p38 MAPK was also found to be phosphorylated upon treatment with H2O2 but it was not required for H2O2-induced migration or proliferation. Furthermore, it was observed that there is a cross talk between the ERK1/2 and the p38 pathways whereby inhibition of either pathway can lead to activation of the other. As a result, the motogenic effects of H2O2 were further enhanced when p38 was inhibited. Our data are consistent with the view that H2O2 may play an important signaling role in wound healing.  相似文献   
5.
肝素结合性表皮生长因子(HB-EGF)是表皮生长因子家族成员之一。HB-EGF是多种细胞的有丝分裂原,参与一系列生理和病理过程,包括心肌细胞肥大,成纤维细胞增生,胶原纤维表达增多,是心肌重塑发生发展过程中的一个重要生长因子。本文综述了HB-EGF在心肌重塑过程中的研究进展。  相似文献   
6.
Aberrant expression levels of epidermal growth factor receptor (EGFR) and its cognate ligands have been recognized as one of the causes of cancer progression. To investigate the validity of EGFR ligands as targets for cancer therapy, we examined the expression of EGFR ligands and in vitro anti-tumor effects of small interference RNA (siRNA) for EGFR ligands in various cancer cells. HB-EGF expression was dominantly elevated in ovarian, gastric, and breast cancer, melanoma and glioblastoma cells, whereas amphiregulin was primarily expressed in pancreatic, colon, and prostate cancer, renal cell carcinoma and cholangiocarcinoma cells. Transfection of siRNAs for HB-EGF or amphiregulin into these cells significantly increased the numbers of apoptotic cells with attenuation of EGFR and ERK activation. In lung cancer cells, any EGFR ligand was not recognized as a validated target for cancer therapy. These results suggest that HB-EGF and amphiregulin are promising targets for cancer therapy.  相似文献   
7.
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and is an important therapeutic target in some types of human cancers. KM3566 is a mouse anti-HB-EGF monoclonal antibody that neutralizes HB-EGF activity by inhibiting the binding of HB-EGF to its receptors. Based on the results of our pharmacokinetics study, a humanized derivative antibody, KHK2866, is rapidly cleared from serum and shows nonlinear pharmacokinetics in cynomolgus monkeys. In this study, we examined the antigen-dependent clearance of an anti-HB-EGF monoclonal antibody in vivo and in vitro in order to pharmacokinetically explain the rapid elimination of KHK2866. We revealed tumor size-dependent clearance of KM3566 in in vivo studies and obtained good fits between the observed and simulated concentrations of KM3566 based on the two-compartment with a saturable route of clearance model. Furthermore, in vivo imaging analyses demonstrated tumor-specific distribution of KM3566. We then confirmed rapid internalization and distribution to lysosome of KM3566 at a cellular level. Moreover, we revealed that the amounts of HB-EGF on cell surface membrane were maintained even while HB-EGF was internalized with KM3566. Recycled or newly synthesized HB-EGF, therefore, may contribute to a consecutive clearance of KM3566, which could explain a rapid clearance from serum. These data suggested that the rapid elimination in pharmacokinetics of KM3566 is due to antigen-dependent clearance. Given that its antigen is expressed in a wide range of normal tissue, it is estimated that the rapid elimination of KHK2866 from cynomolgus monkey serum is caused by antigen-dependent clearance.  相似文献   
8.

Background

Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function.

Methods

Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR.

Results

THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression.

Conclusions and general significance

THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.  相似文献   
9.
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.  相似文献   
10.
Heparan sulfate (HS) is a component of cell surface and extracellular matrix proteoglycans that regulates numerous signaling pathways by binding and activating multiple growth factors and chemokines. The amount and pattern of HS sulfation are key determinants for the assembly of the trimolecular, HS-growth factor-receptor, signaling complex. Here we demonstrate that HS 6-O-sulfotransferases 1 and 2 (HS6ST-1 and HS6ST-2), which perform sulfation at 6-O position in glucosamine in HS, impact ovarian cancer angiogenesis through the HS-dependent HB-EGF/EGFR axis that subsequently modulates the expression of multiple angiogenic cytokines. Down-regulation of HS6ST-1 or HS6ST-2 in human ovarian cancer cell lines results in 30–50% reduction in glucosamine 6-O-sulfate levels in HS, impairing HB-EGF-dependent EGFR signaling and diminishing FGF2, IL-6, and IL-8 mRNA and protein levels in cancer cells. These cancer cell-related changes reduce endothelial cell signaling and tubule formation in vitro. In vivo, the development of subcutaneous tumor nodules with reduced 6-O-sulfation is significantly delayed at the initial stages of tumor establishment with further reduction in angiogenesis occurring throughout tumor growth. Our results show that in addition to the critical role that 6-O-sulfate moieties play in angiogenic cytokine activation, HS 6-O-sulfation level, determined by the expression of HS6ST isoforms in ovarian cancer cells, is a major regulator of angiogenic program in ovarian cancer cells impacting HB-EGF signaling and subsequent expression of angiogenic cytokines by cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号