首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transactivation of epidermal growth factor receptor (EGFR) may contribute to specific protective responses (e.g. mediated by δ-opioid, bradykinin, or muscarinic receptors). No studies have assessed EGFR involvement in cardioprotection mediated by adenosine receptors (ARs), and the role of EGFR in ischemic preconditioning (IPC) is unclear. We tested EGFR, matrix metalloproteinase (MMP), and heparin-binding EGF (HB-EGF) dependencies of functional protection via A(1)AR agonism or IPC. Pretreatment of mouse hearts with 100 nM of A(1)AR agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) or IPC (3 × 1.5-min ischemia/2-min reperfusion) substantially improved recovery from 25-min ischemia, reducing left ventricular diastolic dysfunction up to 50% and nearly doubling pressure development and positive change in pressure over time (+dP/dt). Benefit with both CCPA and IPC was eliminated by inhibitors of EGFR tyrosine kinase (0.3 μM AG1478), MMP (0.3 μM GM6001), or HB-EGF ligand (0.3 ng/ml CRM197), none of which independently altered postischemic outcome. Phosphorylation of myocardial EGFR, Erk1/2, and Akt increased two- to threefold during A(1)AR agonism, with responses blocked by AG1478, GM6001, and CRM197. Studies in HL-1 myocytes confirm A(1)AR-dependent Erk1/2 phosphorylation is negated by AG1478 or GM6001, and reduced with CRM197 (as was Akt activation). These data collectively reveal that A(1)AR- and IPC-mediated functional protection is entirely EGFR and MMP dependent, potentially involving the HB-EGF ligand. Myocardial survival kinase activation (Erk1/2, Akt) by A(1)AR agonism is similarly MMP/HB-EGF/EGFR dependent. Thus MMP-mediated EGFR activation appears essential to cardiac protection and signaling via A(1)ARs and preconditioning.  相似文献   

3.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

4.
Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 (20 microM), a specific inhibitor of MMPs or AG1478 (10 microM), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.  相似文献   

5.
Menadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells. The phosphorylation of Akt by menadione was not inhibited by AG1478, an inhibitor of EGFR. Menadione inhibited the lipid phosphatase activity of PTEN in a cell-free system. In an intact cell system, menadione inhibited the effect of transfected PTEN on Akt. Thus, one mechanism of its action was considered the accelerated activation of Akt through inhibition of PTEN. This was not the sole mechanism responsible for the EGFR-independent activation of Akt, because menadione attenuated the rate of Akt dephosphorylation even in PTEN-null PC3 cells. The decelerated inactivation of Akt, probably through inhibition of some tyrosine phosphatases, was considered another mechanism of its action.  相似文献   

6.
Breast cancer frequently metastasizes to bone, resulting in osteolytic lesions. These lesions, formed by activated osteoclasts, cause pain, an increased susceptibility to fractures, and hypercalcemia. It has been shown that breast cancer cells communicate with osteoblasts and subsequently stimulate osteoclast activity; however, little research has focused on understanding the interaction between breast cancer cells and osteoblasts. We recently reported that conditioned medium from MDA-MB-231 breast cancer cells inhibited the differentiation of MC3T3-E1 osteoblasts through the secretion of transforming growth factor beta (TGFbeta). In addition, the breast cancer conditioned medium altered MC3T3-E1 morphology, the pattern of actin stress fibers, and reduced focal adhesion plaques. In the current study, we identified the mechanism used by MDA-MB-231 cells to cause these effects. When MC3T3-E1 osteoblasts were cultured with MDA-MB-231 conditioned medium preincubated with neutralizing antibodies to platelet derived growth factor (PDGF), insulin-like growth factorII (IGFII), and TGFbeta, focal adhesion plaques and actin stress fiber formation were restored. These cytokines were further found to signal through PI3Kinase and Rac. In conclusion, TGFbeta, PDGF, and IGFII might be good therapeutic targets for treating breast cancer-induced osteolytic lesions.  相似文献   

7.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

8.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

9.
10.
In earlier studies, we and others have established that activation of EGFR can promote survival in association with upregulation of Bcl-x(L). However, the mechanism responsible for upregulation of Bcl-x(L) is unknown. For the current studies we have chosen pro-apoptotic, c-Myc-overexpressing murine mammary epithelial cells (MMECs) derived from MMTV-c-Myc transgenic mouse tumors. We now demonstrate that EGFR activation promotes survival through Akt and Erk1/2. Blockade of EGFR kinase activity and the PI3-K/Akt and MEK/Erk pathways with pharmacological inhibitors resulted in a significant induction of cellular apoptosis, paralleled by a downregulation of both Akt and Erk1/2 proteins. Consistent with a survival-promoting role of Akt, we observed that constitutively activated Akt (Myr-Akt) inhibited apoptosis of pro-apoptotic, c-Myc-overexpressing cells following the inhibition of EGFR tyrosine kinase activity. In addressing possible downstream effectors of EGFR through activated Akt, we detected significant upregulation of Bcl-x(L) protein, suggesting this pro-survival protein is a target of Akt in MMECs. By using pharmacological inhibitors of PI3-K/Akt and MEK/Erk together with dominant-negative Akt and Erk1 we observed the decrease in Bcl-x(L) protein. Our findings may be of importance for understanding the emerging role of Bcl-x(L) as a potential marker of poor prognosis in breast cancer.  相似文献   

11.
We have previously found that bronchial epithelial cells express CCR3 whose signaling elicits mitogen-activated protein (MAP) kinase activation and cytokine production. Several investigators have focused on the signaling crosstalk between G protein-coupled receptors (GPCRs) and epidermal growth factor receptor (EGFR) in cancer cells. In this study, we investigated the role of EGFR in CCR3 signaling in the bronchial epithelial cell line NCI-H292. Eotaxin (1-100 nM) induced dose-dependent tyrosine phosphorylation of EGFR in NCI-H292 cells. Pretreatment of the cells with the EGFR inhibitor (AG1478) significantly inhibited the MAP kinase phosphorylation induced by eotaxin. Eotaxin stimulated IL-8 production, which was inhibited by AG1478. The transactivation of EGFR through CCR3 is a critical pathway that elicits MAP kinase activation and cytokine production in bronchial epithelial cells. The delineation of the signaling pathway of chemokines will help to develop a new therapeutic strategy to allergic diseases including bronchial asthma.  相似文献   

12.
力生长因子(mechano growth factor,MGF)是新近发现的一种生长因子,由Igf-1基因剪接变异产生,拉伸刺激会促使成骨细胞表达力生长因子.比较分析了MGF及其羧基端E肽(MGF-Ct24E)对成骨细胞前体细胞MC3T3-E1分化的影响.结果显示:MGF和MGF-Ct24E具有显著激活胞外信号调节激酶1/2(Erk1/2)的作用,并降低了成骨细胞碱性磷酸酶、Ⅰ型胶原的表达,促进了骨桥蛋白(OPN)的表达,减少了核心绑定因子(corebinding factor1,Cbfα-1)的核转运量,对成骨细胞的分化具有延迟效应,这种效应通过抑制剂PD98059抑制Erk1/2的活化得到逆转;MGF还能显著激活磷脂酰肌醇3-激酶信号通路中的蛋白激酶B(Akt),该活化作用对成骨细胞分化是必需的,钙沉积分析显示长期培养下的细胞MGF促进了矿化节结的形成.这些结果说明,MGF-Ct24E对成骨细胞的分化具有抑制作用,这种作用与Erk1/2的活化有关,MGF因为包含E肽和IGF-1部分,能分别激活Erk1/2和Akt,因此对成骨细胞分化表现出双重效用,在成骨细胞分化早期,具有一定的延迟效应,而在分化晚期对成骨...  相似文献   

13.
Liver progenitor cells rise as potential critical players in hepatic regeneration but also carcinogenesis. It is therefore mandatory to define the signals controlling their activation and expansion. Recently, by using a novel in vitro model of oval cell lines expressing a mutant tyrosine kinase-inactive form of c-Met we demonstrated that autocrine c-Met signalling plays an essential role in promoting oval cell survival. Here, we investigated the significance of the epidermal growth factor receptor (EGFR) signalling in oval cell proliferation and survival, as well as a potential functional crosstalk between the c-Met and the EGFR pathways. We found an autocrine activation of the EGFR-triggered pathway in Metflx/flx and Met−/− oval cells as judged by constitutive expression of the EGFR ligands, transforming growth factor-alpha (TGF-α) and heparin-binding EGF like growth factor (HB-EGF), and activation of EGFR. On the other hand, treatment with AG1478, a specific inhibitor of EGFR, effectively blocked endogenous and EGF-induced proliferation, while increased serum withdrawal and transforming growth factor-beta (TGF-β)-induced apoptosis. These results suggest that constitutively activated EGFR might promote oval cell proliferation and survival. We found that hepatocyte growth factor (HGF) does not transactivate EGFR nor EGF transactivates c-Met. Furthermore, treatment with AG1478 or EGFR gene silencing did not interfere with HGF-mediated activation of target signals, such as protein kinase B (AKT/PKB), and extracellular signal-regulated kinases 1/2 (ERK 1/2), nor did it have any effect on HGF-induced proliferative and antiapoptotic activities in Metflx/flx cells, showing that HGF does not require EGFR activation to mediate such responses. EGF induced proliferation and survival equally in Metflx/flx and Met−/− oval cells, proving that EGFR signalling does not depend on c-Met tyrosine kinase activity. Together, our results provide strong evidence that in normal, untransformed oval cells, c-Met and EGFR represent critical molecular players to control proliferation and survival that function independent of one another.  相似文献   

14.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

15.
We employed two selective EGFR tyrosine kinase inhibitors: AG494 (reversible) and AG1478 (irreversible) for growth regulation of human lung (A549) and prostate (DU145) cancer cell lines, cultured in chemically defined DMEM/F12 medium. Both tested tyrphostins significantly inhibited autocrine growth of the investigated cell lines. The action of AG494 was dose dependent, and at highest concentrations led to complete inhibition of growth. AG1478 seemed to be more effective at lower concentrations, but was unable to completely inhibit growth of A549 cells. Inhibition of EGFR kinase activity by AG494 in contrast to AG1478 had no effect on the activity of ERK in both cell lines. Both EGFR's inhibitors induced apoptosis of the investigated lung and prostate cancer cell lines, but the proapoptotic effect of the investigated tyrphostins was greater in A549 than in DU145 cells. The tyrphostins arrested cell growth of DU145 and A549 cells in the G1 phase, similarly to other known inhibitors of EGFR. The influence of AG494 and AG1478 on the activity of two signaling proteins (AKT and ERK) was dependent upon the kind of investigated cells. In the case of DU145 cells, there was an evident decline in enzymatic activity of both kinases (stronger for AG1478), while in A549, only AG1478 effectively inhibited the phosphorylation of Akt. Tyrphostins AG494 and AG1478 are ATP-competitors and are supposed to have a similar mechanism of action, but our results suggest that this is not quite true.  相似文献   

16.
Proximal events in signaling by plasma membrane estrogen receptors   总被引:18,自引:0,他引:18  
Estradiol (E2) rapidly stimulates signal transduction from plasma membrane estrogen receptors (ER) that are G protein-coupled. This is reported to occur through the transactivation of the epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor, similar to other G protein-coupled receptors. Here, we define the signaling events that result in EGFR and ERK activation. E2-stimulated ERK required ER in breast cancer and endothelial cells and was substantially prevented by expression of a dominant negative EGFR or by tyrphostin AG1478, a specific inhibitor for EGFR tyrosine kinase activity. Transactivation/phosphorylation of EGFR by E2 was dependent on the rapid liberation of heparin-binding EGF (HB-EGF) from cultured MCF-7 cells and was blocked by antibodies to this ligand for EGFR. Expression of dominant negative mini-genes for Galpha(q) and Galpha(i) blocked E2-induced, EGFR-dependent ERK activation, and Gbetagamma also contributed. G protein activation led to activation of matrix metalloproteinases (MMP)-2 and -9. This resulted from Src-induced MMP activation, implicated using PP2 (Src family kinase inhibitor) or the expression of a dominant negative Src protein. Antisense oligonucleotides to MMP-2 and MMP-9 or ICI 182780 (ER antagonist) each prevented E2-induced HB-EGF liberation and ERK activation. E2 also induced AKT up-regulation in MCF-7 cells and p38beta MAP kinase activity in endothelial cells, blocked by an MMP inhibitor, GM6001, and tyrphostin AG1478. Targeting of only the E domain of ERalpha to the plasma membrane resulted in MMP activation and EGFR transactivation. Thus, specific G proteins mediate the ability of E2 to activate MMP-2 and MMP-9 via Src. This leads to HB-EGF transactivation of EGFR and signaling to multiple kinase cascades in several target cells for E2. The E domain is sufficient to enact these events, defining additional details of the important cross-talk between membrane ER and EGFR in breast cancer.  相似文献   

17.
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.  相似文献   

18.
Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation as well as the signals of several signal molecules, including epidermal growth factor receptors (EGFR). These compounds are localized in a glycosphingolipid-enriched microdomain on the cell surface and regulated by the glycosphingolipid composition. However, the role that gangliosides play in osteoblastogenesis is not yet clearly understood, therefore, in this study, the relationship between gangliosides and EGFR activation was investigated during osteoblast differentiation in human mesenchymal stem cells (hMSCs). The results of high-performance thin-layer chromatography (HPTLC) showed that ganglioside GM3 expression was decreased, whereas ganglioside GD1a expression was increased during the differentiation of hMSCs into osteoblasts. In addition, an increase in the activation of alkaline phosphatase (ALP) was observed in response to treatment with EGF (5 ng/ml) and GD1a (1 μM) (p < 0.05). The activation of ALP was significantly elevated in response to treatment of ganglioside GD1a with EGF when compared to control cells (p < 0.01). However, treatment with GM3 (1 μM) resulted in decreased ALP activation (p < 0.01), and treatment of hMSCs with a chemical inhibitor of EGFR, AG1478, removed the differential effect of the two gangliosides. Moreover, incubation of the differentiating cells with GD1a enhanced the phosphorylation of EGFR, whereas treatment with GM3 reduced the EGFR phosphorylation. However, AG1478 treatment inhibited the effect of ganglioside GD1a elicitation on EGFR phosphorylation. Taken together, these results indicate that GD1a promotes osteoblast differentiation through the enhancement of EGFR phosphorylation, but that GM3 inhibits osteoblast differentiation through reduced EGFR phosphorylation, suggesting that GM3 and GD1a are essential molecules for regulating osteoblast differentiation in hMSCs.  相似文献   

19.
20.
Insulin-like growth factor (IGF) signaling is critical for osteoblast development and IGF binding protein (IGFBP)-4 is one of the principle IGFBPs expressed by osteoblasts. Release of bound IGF via proteolytic degradation of IGFBP-4 is likely to be critical for osteoblast development. We have investigated whether IGF-sensitive, IGFBP-4 degradation in mouse MC3T3-E1 osteoblasts is due to the metzincin pregnancy-associated plasma protein (PAPP)-A. Degradation of IGFBP-4 by PAPP-A or MC3T3-E1 conditioned medium was enhanced by IGF-II but inhibited by mutation of basic residues at or near the PAPP-A cleavage site in IGFBP-4. Furthermore, immunodepletion of PAPP-A from MC3T3-E1 conditioned medium abolished IGFBP-4 degradation. We also found that PAPP-A messenger RNA was expressed throughout differentiation of MC3T3-E1 cells. These results demonstrate for the first time that PAPP-A is the IGFBP-4 protease in MC3T3-E1 cells, a widely used model for osteoblast development, and that PAPP-A may regulate IGF release throughout osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号