首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3560篇
  免费   271篇
  国内免费   1001篇
  2024年   4篇
  2023年   56篇
  2022年   86篇
  2021年   110篇
  2020年   131篇
  2019年   136篇
  2018年   121篇
  2017年   156篇
  2016年   186篇
  2015年   133篇
  2014年   167篇
  2013年   190篇
  2012年   154篇
  2011年   214篇
  2010年   138篇
  2009年   252篇
  2008年   241篇
  2007年   306篇
  2006年   262篇
  2005年   206篇
  2004年   162篇
  2003年   174篇
  2002年   122篇
  2001年   121篇
  2000年   103篇
  1999年   68篇
  1998年   70篇
  1997年   52篇
  1996年   96篇
  1995年   64篇
  1994年   42篇
  1993年   41篇
  1992年   47篇
  1991年   41篇
  1990年   45篇
  1989年   29篇
  1988年   36篇
  1987年   31篇
  1986年   44篇
  1985年   24篇
  1984年   21篇
  1983年   5篇
  1982年   29篇
  1981年   16篇
  1980年   17篇
  1979年   21篇
  1978年   21篇
  1977年   19篇
  1976年   15篇
  1974年   3篇
排序方式: 共有4832条查询结果,搜索用时 15 毫秒
1.
This study estimates the economic values of and the dominant contributors to five key ecosystem services of wetlands in Beijing, by using the wetland inventory data in 2014 and economic valuation methods. Results indicate that the 51,434 ha of wetlands in Beijing annually provide 2.07 billion m3 of flood regulation, 944.01 million m3 of water provision, 42,154 tons of chemical oxygen demand (COD) purification, 3.03 PJ of heat absorption, and 9587 ha of habitat. Their economic values are estimated to be 15.89 billion RMB, 1.19 billion RMB, 169 million RMB, 421 million RMB, and 1.08 billion RMB in 2014 (RMB: Chinese currency, US$1 = RMB 6.14), respectively. The total values of five key wetland ecosystem services reach 18.76 billion RMB. In addition, the reservoir and river wetlands in Miyun, Yanqing, Fangshan, Huairou, and Mentougou Districts contribute 78% of key ecosystem services, whereas the urban wetlands in Xicheng, Dongcheng, Haidian, Chaoyang, and Tongzhou Districts more conveniently serve densely local people, hence they should be given particular attentions. In this paper, we develop the valuation methods of wetland ecosystem services, and recommend diversified strategies, regulations, and programs to protect the remaining wetlands in Beijing. This work can also provide a reference for the valuating of wetland ecosystem services for other urban-rural areas.  相似文献   
2.
Although an understanding of the quantity and quality of sedimentary organic matter (SOM) pools is necessary to design sound environmental management strategies for lacustrine systems, the characterization of organic matter sources and the assessment of their relative contributions to eutrophic and inland lake sediments remain insufficient. In this study, the contribution of potential organic matter sources to sediments in shallow and hypereutrophic lake Taihu, China was assessed on the molecular level using source-specific fatty acid biomarkers. The results indicated that SOM was composed mainly of terrestrial plants with a maximal contribution of 45.3 ± 2.4% to the total organic carbon, which accounted for approximately 66% among the determined organic matter sources. Evidence suggests the terrestrial plants remained in a fresh state in surface sediments: the correlation (R2 = 0.62, p < 0.05) between bacterial and terrestrial plant carbon was strong. On the other hand, aquatic plant and bacterial carbon contributed 5–15% to the total organic carbon, which was followed by the faint contribution (<5% of total organic carbon) of algae-derived organic carbon including cyanobacteria, diatoms, and dinoflagellates. The results provided details of the contributions of SOM sources, illustrating the usefulness of fatty acid biomarkers in discriminating organic matter sources within lake environments. Although organic matter sources of sediments varied in spatial and temporal patterns, the strong correlation between terrestrial plant and total organic carbon (R2 = 0.60, p < 0.05) indicates that terrestrial plants were the dominant source in lake sediments.  相似文献   
3.
High altitude wetlands on the Tibetan Plateau have been shrinking due to anthropogenic disturbances and global climate change. However, the few studies that have been conducted on wetlands are inconclusive about the effect of soil moisture on seed banks and potential of seed banks in wetlands with different levels of soil moisture for regeneration of dried wetlands. We investigated seed banks and plant communities along a soil moisture gradient. A structural equation model was used to analyze the direct and indirect effects of soil moisture on seed banks, as well as the relationship between plant communities and seed banks. Although soil moisture had no direct effects on seed bank richness and density and indirect effects on seed banks through plant community, it had indirect effects on the seed bank through soil pH. Soil moisture also did not have direct effects on plant community richness, but it had indirect effects through soil pH. Plant community composition changed with soil moisture, but aboveground plant abundance and seed banks composition did not change. Low similarity exists between plant community and seed banks for all wetlands, and similarity decreased along the moisture gradient. The key factor determining plant community diversity was soil pH, while seed bank diversity was mainly affected by soil pH and plant community diversity with wetland drying. Although potential for regenerating the plant community from the seed bank decreased with an increase in soil moisture, drained wetlands still have enough residual seeds for successful restoration of species-rich alpine meadows.  相似文献   
4.
R. P. Novitzki 《Plant Ecology》1995,118(1-2):171-184
The U.S. Environmental Protection Agency (EPA) initiated the Environmental Monitoring and Assessment Program (EMAP) in 1988. The wetland component (EMAP-Wetlands) is designed to provide quantitative assessments of the current status and long-term trends in the ecological condition of wetland resources. EMAP-Wetlands will develop a wetland monitoring network and will identify and evaluate indicators that describe and quantify wetland condition. The EMAP-Wetlands network will represent a probability sample of the total wetland resource. The EMAP sample is based on a triangular grid of approximately 12,600 sample points in the conterminous U.S. The triangular grid adequately samples wetland resources that are common and uniformly distributed in a region, such as the prairie pothole wetlands of the Midwest. However, the design is flexible and allows the base grid density to be increased to adequately sample wetland resources, such as the coastal wetlands of the Gulf of Mexico, which are distributed linearly along the coast. The Gulf sample network required a 49-fold increase in base grid density. EMAP-Wetlands aggregates the 56 U.S. Fish and Wildlife Service's (FWS) National Wetland Inventory (NWI) categories (Cowardin et al. 1979) into 12 functionally similar groups (Leibowitz et al. 1991). Both the EMAP sample design and aggregated wetland classes are suitable for global inventory and assessment of wetlands.The research described in this report has been funded by the U.S. Environmental Protection Agency. This document has been prepared at the EPA Environmental Research Laboratory in Corvallis, OR, through contract No. 68-C8-0006 to Man Tech Environmental Technology, Inc. This paper has been subjected to the Agency's peer and administrative review and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.  相似文献   
5.
6.
In the Okavango Delta 98–99% of the water from inflow and rainfall is lost to the atmosphere through evapotranspiration. As a consequence 94% of inflowing solutes are retained within the Delta landscape. This process might be expected to result in an entirely saline environment, but that is not the case: the surface waters have very low salinity, supporting a typical freshwater biota. It has been deduced that the numerous islands in the Delta (about 150,000 within an area of 13,500 km2) have been formed through evapotransporative concentration in the groundwater, of infiltrating solutes, followed by precipitation and volume increase. Evidence of this is the large amount of calcrete in island soils. These islands of 3–10 m thickness with clayey soils are underlain by fine Kalahari sand to a depth of 200–300 m, which also indicates that they are formed through surface processes. The infiltration rate of surface water from floodplains and streams into islands is very high, and is predominantly a lateral process that is unidirectional. Evapotranspiration in the riparian woodland zone cause the ground-waters in the central area of islands—with halophyte grasslands—to have very high salinities. By use of chloride as a conservative element the concentration factor between central island groundwater and surface water is calculated to be 500–1,000. This groundwater is depleted of calcium and magnesium supporting the early deductions that these elements have precipitated as calcrete. There is also a large depletion of silicate and potassium that probably have precipitated as well forming the clayey soils typical of the islands. The central island groundwater is dominated by sodium, bicarbonate and dissolved organic matter. The gradual increase of salinity here causes a periodic let off of this water through a density-driven process to deeper layers. This process together with island growth through precipitation of solutes are the two major sink processes of inflowing solutes and explains why the Okavango Delta is at present a freshwater system. The whole island complex is calculated to be 100,000–400,000 years old while some intensely studied islands may be younger: 80,000–240,000 years. The discrepancy is explained by a biassed selection of islands currently in flooded areas with better growth conditions. The uniqueness of the Okavango Delta and ideas for future research are discussed.  相似文献   
7.
8.
9.
1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old‐growth and two 20‐year‐old stands) and four stands of moist forest in Panama (old‐growth, 20, 40 and 120‐year‐old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old‐growth trap was 1.89 times greater than the average catch per second‐growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions.  相似文献   
10.
利用Ecopath模型评价鲢鳙放养对千岛湖生态系统的影响   总被引:2,自引:0,他引:2  
邓悦  郑一琛  常剑波 《生态学报》2022,42(16):6853-6862
“保水渔业”是中国控制"水华"暴发等生态灾变的措施之一,其结果存在较大的不确定性。在浙江省的新安江水库(千岛湖),"保水渔业"的实施带来了水质改善和渔业增产的双重效果。但在生态系统自组织层面,这种人工干预手段引起的生态系统结构化效应的研究,尚未真正展开。基于2008-2010年千岛湖的生态和渔业资源调查数据,应用EwE (V6.6)构建了2010年千岛湖生态系统的Ecopath模型,并将其与2004和2016年的模型进行对照,分析了千岛湖生态系统在鲢、鳙鱼放养下的变化。千岛湖生态系统在3个年份均为4个整合营养级,营养能流分布成典型的金字塔型,且营养流总量中流向碎屑的占比很大,营养级Ⅰ、Ⅱ的能量被利用得不够充分;除鲢、鳙鱼外大部分鱼类的生物量逐渐下降,浮游植物和碎屑的生物量增多;系统的初级生产力和规模得到了一定提升,但总体的能量转换效率有所降低。在一些和系统成熟度、复原力和稳定性密切相关的参数方面,总初级生产量/总呼吸量增加,Finn氏循环指数和Finn氏平均路径长度逐渐降低,3个年份的连接指数(CI)分别为0.223、0.219、0.263,系统杂食指数(SOI)分别为0.087、0.102和0.131。研究分析表明,长期的鲢、鳙鱼放养使千岛湖的食物网结构发生了较大的变动,生态系统的营养交互关系不够复杂,成熟度和稳定性有所下降。千岛湖作为一个由水库发展而来的淡水水体,食物网关系本身就较为简单。因此,未来需要避免过多的人为干扰,并基于生态学原理更系统地进行修复工作。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号