首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   25篇
  国内免费   171篇
  2024年   2篇
  2023年   14篇
  2022年   6篇
  2021年   14篇
  2020年   9篇
  2019年   16篇
  2018年   9篇
  2017年   13篇
  2016年   12篇
  2015年   13篇
  2014年   16篇
  2013年   17篇
  2012年   27篇
  2011年   25篇
  2010年   29篇
  2009年   25篇
  2008年   19篇
  2007年   14篇
  2006年   8篇
  2005年   11篇
  2004年   18篇
  2003年   7篇
  2002年   14篇
  2001年   11篇
  2000年   11篇
  1999年   2篇
  1997年   11篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1993年   4篇
  1992年   8篇
  1991年   2篇
  1989年   2篇
  1987年   6篇
  1985年   1篇
  1983年   2篇
排序方式: 共有411条查询结果,搜索用时 31 毫秒
1.
2.
邵传贤 《植物杂志》2010,(12):53-55
今年8月中旬,一种超级细菌像幽灵一样的从南亚地区很快流窜到英国、美国和加拿大等国家,它对所有抗生素都无所畏惧,让全世界的医生瞠目结舌,惊骇不已。目前已感染数百人,死亡十多人,其中仅英国就有5名患者死亡。  相似文献   
3.
以纳他霉素为抑菌剂, 实验测定了离体条件下不同浓度纳他霉素对胶孢炭疽菌(Colletotrichum gloeosporioides)的孢子萌发及菌丝生长的抑制效果, 以及活体损伤接种炭疽病菌后, 纳他霉素对芒果(Mangifera indica)果实炭疽病的防治效果。通过测定纳他霉素处理后胶孢炭疽菌的细胞膜相对渗透率、可溶性蛋白含量、细胞膜完整性、孢子内活性氧水平和线粒体分布情况, 初步探明其抑菌机理。结果表明, 3 mg∙L -1纳他霉素可显著抑制胶孢炭疽菌孢子萌发、芽管伸长和菌落生长, 80 mg∙L -1纳他霉素可有效抑制芒果贮存过程中果实炭疽病斑的扩展。纳他霉素处理后胶孢炭疽菌细胞膜相对渗透率和可溶性蛋白含量增加; 2 mg∙L -1纳他霉素处理8小时, 处理组胶孢炭疽菌孢子细胞膜损伤染色率为33.6%, 对照组染色率为13.9%; 处理组胞内活性氧产生染色率达46.9%, 比对照组高39.7%; 同时观察到纳他霉素使胞内线粒体分布不均且荧光信号微弱。以上结果表明, 纳他霉素可以破坏胶孢炭疽病菌细胞膜, 诱导活性氧大量积累, 并降低线粒体活性, 从而干扰菌体正常生理活性, 使其代谢活动受影响, 从而达到抑菌目的。  相似文献   
4.
为研究麻楝(Chukrasia tabularis)的化学成分,采用色谱法从麻楝果实乙醇提取物中分离得到15个化合物,利用波谱学方法鉴定其结构分别为:没食子酸甲酯(1)、没食子酸乙酯(2)、没食子酸(3)、ozoroalide(4)、stigmast-4-en-6β-ol-3-one(5)、黄柏呈(6)、chukranin A(7)、chisopanin M(8)、21α,24α-methylmelianodiol(9)、toonaciliatin K(10)、21α,25-dimethylmelianodiol(11)、odoratone(12)、bourjotinolone A(13)、hispidone(14)和phragmalin di-isobutyrate(15)。化合物4~14为首次从麻楝属植物中分离得到。采用滤纸片琼脂扩散法对单体化合物进行抗烟草青枯病菌(Ralstonia solanacearum)的活性研究,结果表明化合物1、2和3具有中等拮抗活性。  相似文献   
5.
[目的]劳尔氏菌(Ralstonia solanacearum)在茄科作物上引起严重的细菌性青枯病,本研究旨在发掘青枯劳尔氏菌与致病相关的基因。[方法]利用Tn5转座子构建随机插入突变体,分析生物膜形成、细胞运动和致病性;对有表型变化的突变体,运用TAIL-PCR方法鉴定Tn5插入位点,确定所突变的基因。[结果]以模式菌株GMI000为出发菌,总共获得了400个突变体,其中2个突变体不能形成生物膜,在软琼脂平板上的运动能力下降;接种感病番茄植物,这2个突变体都不能引起萎焉症状。TAIL-PCR结果显示,2个突变体的Tn5插入位点都在NADH脱氢酶F亚基(nuoF)中,距离翻译起始位点分别为103-bp和225-bp。ripAY基因启动子推动的nuoF基因互补载体,完全恢复了2个突变体的表型。[结论]NADH脱氢酶复合物是微生物呼吸电子传递链中的第一步催化酶。我们的结果表明,NADH脱氢酶复合物对R.solanacearum生物膜形成、细胞运动和致病性也有重要作用。  相似文献   
6.
[目的] 研究桑椹肥大性菌核病菌分生孢子的生物学特性,诱导菌丝产生分生孢子的方法及产生途径,为桑椹肥大性菌核病的防治提供依据。[方法] 显微镜下面观察病果形成不同阶段以及人工诱导产生的分生孢子形态特征;测定不同温度和湿度对菌丝产生分生孢子的影响;分别用病果和人工诱导产生的分生孢子悬浮液接种健康的桑椹,统计其发病率;以不同发病阶段的病椹在PDA、诱导培养基上产生的菌丝和菌核为材料,通过qPCR方法检测相关基因的表达水平,研究cAMP途径对于分生孢子形成的影响。[结果] C.shiraiana在温度为20℃-30℃,相对湿度为50%-80%条件下可以产生大量的分生孢子。人工诱导产生的分生孢子和病果中的分生孢子形态差异较大;病果中分生孢子悬浮液侵染健康的桑椹,其发病率为37%,而人工诱导产生的分生孢子对桑椹不具有侵染能力;分生孢子梗和分生孢子可在马铃薯片上被诱导产生;外源添加的cAMP影响菌丝的形态和分生孢子的形成,但不影响菌核的形成。AC含量在桑椹发病的第2阶段增长迅速,在发病的第3阶段和第4阶段迅速下降,PKA在发病的桑椹中始终没有表达。[结论] 桑椹肥大性菌核病病果可通过分生孢子造成再次侵染。分生孢子的形成对cAMP途径中的AC和PKA表达量起负调控作用。研究结果能够进一步增加我们对病原菌侵染桑果所需外界环境条件的理解,同时也进一步完善了C.shiraiana的侵染循环和分生孢子形成途径。  相似文献   
7.
探究稻曲病菌(Ustiloginoidea virens(Cooke) Takahashi)厚垣孢子壁黑色素的最佳提取方法,采用以HCl为提取剂的酸提法和以NaOH为提取剂的碱提法,对该病菌黑色和黄色2种厚垣孢子壁的黑色素进行提取,用3因素3水平进行正交设计试验,结果表明以NaOH作提取剂为佳,其提取黑色素效果最佳的组合条件为3 mol/L NaOH、2 mol/L HC l、水浴温度80℃、水浴时间120 min。  相似文献   
8.
通过室内紫外光诱导,获得了油菜菌核病菌多株抗扑海因突变体。采用菌丝生长速率法.对诱变得到的抗扑海因菌株的抗药性进行了测定。结果显示,油菜菌核病菌抗扑海因菌株的EC_(50)值分布范围为0.1159-604.2200μg/mL,平均值为117.1363μg/mL,突变株UVIP'SS-7、UVIP'SS-8、UVIP'SS-15、UVIP'SS-16和UVIP'SS-18的EC_(50)值均大于160μg/ML。油菜菌核病菌抗扑海因突变株在含扑海因质量浓度为1μg/mL时的菌核产生数量绝大多数都大于不含药PSA平板的菌核数量,而高浓度下菌核几乎不产生。  相似文献   
9.
海藻糖代谢调控真菌生长、发育及致病性,为了进一步研究海藻糖代谢在谷子弯孢病菌中的功能,对海藻糖酶基因及其启动子进行了克隆.根据植物病原真菌海藻糖酶基因的保守序列设计简并引物,扩增得到海藻糖酶基因同源序列.通过RACE技术,首次在谷子弯孢病菌中克隆得到了海藻糖酶基因(ClTRE)全长cDNA序列.序列分析表明,该基因最大开放阅读框为2037 bp,编码679个氨基酸;二级结构预测表明,该蛋白含约40.48%的α螺旋,12.99%的延伸串,6.5%的β转角,40.03%的不规则卷曲;蛋白保守结构域分析发现其含有海藻糖酶特有的保守位点,与其他植物病原真菌中海藻糖酶基因有51%-86%同源性;利用SignalP3.0软件预测谷子弯孢海藻糖酶蛋白具有信号肽.通过染色体步移技术克隆得到其上游启动子序列,利用TFSEARCH软件分析含有多个与逆境胁迫相关的顺式作用元件,初步推测该基因与逆境胁迫相关.谷子弯孢病菌ClTRE基因及其启动子的克隆,为进一步研究该基因在病菌致病中作用以及以该基因为靶位点的化学防控奠定基础.  相似文献   
10.
分别利用表达载体pET-32a(+)和pGEX-4T-1,对水稻白叶枯病菌(Xanthomonas oryzzae v.oryzae,简称Xoo)中环鸟苷二磷酸代谢相关基因PXO_03877进行了原核表达,并进行可溶性检测.结果显示,用pET-32a(+)栽体构建的表达质粒栽体经诱导后,重组蛋白大多位于沉淀而非上清中,经诱导条件优化后,蛋白仍以包涵体形式存在;而利用pGEX-4T-1载体表达的含有GST标签的重组蛋白为可溶性蛋白,可用于下一步纯化后进行功能分析.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号