首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   13篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2014年   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
天然的木质纤维素材料含有纤维素、半纤维素和木质素等成分。降解天然木质纤维素底物时,需要木质纤维素酶共同作用。近年在木质纤维素酶的相互协同作用方面的研究引起人们的关注,成为一个新的研究热点,文中使用两个不同的共表达载体pETDuet-1和pRSFDuet-1,在大肠杆菌中共表达了白蚁及其肠道微生物来源的β-葡萄糖苷酶、内切β-1,4-葡聚糖酶、漆酶和木聚糖酶这4种木质纤维素酶,经过SDS-PAGE分析得到了与理论值一致的蛋白条带,同时经过酶活验证,这4种蛋白都具有酶活性。以磷酸处理的微晶纤维素(PASC)为底物,测定了共表达酶粗酶液与单独表达酶混合液的协同作用因子,从还原糖的产量上经计算共表达的粗酶液比单独表达酶的混合液对PASC的降解协同作用提高44%;以滤纸和磷酸处理的玉米芯为底物,测定降解协同作用,分别提高了34%和20%。结果表明,共表达酶的降解效率要高于混合的单组分酶液降解效率的总和。  相似文献   
2.
从白蚁中分离到具有纤维素酶活的贪噬菌   总被引:1,自引:0,他引:1  
以黄胸散白蚁Reticulitermes flaviceps后肠为材料,分离培养具有降解纤维素能力的微生物,以进一步了解白蚁后肠微生物的种类。通过以羧甲基纤维素钠(CMC-Na)为唯一碳源的富集及选择培养基培养、筛选,获得一株具有纤维素酶活的菌株R3063。形态学鉴定、革兰氏染色观察及16S rDNA基因序列分析表明该菌株属于贪噬菌(Variovorax sp.)。目前尚未见贪噬菌具有纤维素酶活的报道。  相似文献   
3.
【背景】培菌白蚁是属于白蚁科的一类与鸡枞菌属真菌共生的高等白蚁,其与体内肠道微生物和体外菌圃微生物形成三维共生体系。【目的】分析培菌白蚁菌圃和粪便的微生物多样性,并与肠道微生物进行比较。【方法】通过Illumina MiSeq高通量测序方法对培菌白蚁菌圃和粪便样品进行细菌16S rRNA基因和真菌ITS测序分析。【结果】高通量测序获得培菌白蚁菌圃和粪便样品细菌和真菌的有效序列和OTU数目。5个样品细菌OTU数目在90-199之间,而真菌OTU在10-58之间,细菌的种类多样性明显大于真菌。不论是细菌还是真菌,粪便样品的OTU数目多于菌圃样品。经物种分类分析,菌圃样品主要优势细菌是变形菌门(Proteobacteria),其相对含量超过82.4%;其次是拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes);粪便样品中优势细菌为拟杆菌门,其次是变形菌门,粪便优势菌属为别样杆菌属和营发酵单胞菌属,这与培菌白蚁肠道菌多样性组成一致。培菌白蚁菌圃和粪便样品共生真菌主要为担子菌门(Basidiomycota)和子囊菌门(Ascomycota)。菌圃优势真菌为鸡枞菌属(Termitomyces),相对含量在51.83%以上,菌圃中还鉴定到炭角菌属(1%,Xylaria)。【结论】为今后培菌白蚁-体内外微生物共生关系研究以及微生物的分离培养提供了依据和参考。  相似文献   
4.
【目的】从培菌白蚁——黄翅大白蚁后肠微生物菌群中分离能降解几丁质的细菌。【方法】以胶体几丁质为唯一碳源,根据胶体几丁质水解透明圈的大小进行筛选。通过形态学、生理生化以及16SrRNA基因序列分析进行菌株鉴定。【结果】从黄翅大白蚁肠道中筛选到8株能够降解胶体几丁质的细菌,它们分别属于芽孢杆菌属(Bacillus)、短芽孢杆菌属(Brevibacillus)、纤维单胞菌属(Cellulomonas)、指孢囊菌属(Dactylosporangium)、黄杆菌属(Flavobacterium)、类芽孢杆菌属(Paenibacillus)、鞘氨醇单胞菌属(Sphingomonas)和寡养单胞菌属(Stenotrophomonas)。8株菌均具有几丁质酶、β-葡萄糖苷酶和内切葡聚糖酶活性。【结论】从黄翅大白蚁后肠中获得8株能够降解胶体几丁质并具有其他碳水化合物降解酶活性的细菌,这一研究为了解白蚁肠道微生物协助白蚁消化食物机制提供了依据。  相似文献   
5.
摘要:遗传操作系统,是研究基因和基因产物功能的一个极为重要的工具。超嗜热古菌遗传操作系统方面的研究落后于甲烷菌及嗜盐古菌中的研究,主要原因是选择标记的缺乏。然而,近十年来,在以硫化叶菌(Sulfolobus)为代表的超嗜热泉古菌和Thermococcus kodakaraensis为代表的超嗜热广古菌中,遗传操作系统研究取得了很大的进展。本文主要对这两种超嗜热古菌的遗传操作系统进展以及应用进行概述。  相似文献   
6.
利用PCR扩增技术从极端嗜热古菌Pyrococcus horikoshii中得到预测为几丁二糖脱乙酰酶的基因(Dacph,PH0499),将其克隆入表达质粒pET15b,并在E.coliBL21_codonPlus(DE3)_RIL中表达获得可溶的Dacph重组蛋白(31.6kDa),TLC分析证明Dacph能够脱去N_乙酰氨基葡萄糖及几丁二糖的一个乙酰基,并与氨基葡萄糖苷酶(BglAPh)共同作用水解几丁二糖生成氨基葡萄糖,从而被命名为一种几丁二糖脱乙酰酶。与Pyrococcus horikoshii中外切氨基葡萄糖苷酶等共同作用,Dacph可能在嗜热球古菌独特的几丁质降解途径中起重要作用。  相似文献   
7.
蒋宇彤  张硕  林子佳  倪金凤 《微生物学报》2020,60(12):2635-2649
木质纤维素是地球上最丰富的有机聚合物,白蚁是古老但进化最成功的高效木质纤维素降解者之一。了解白蚁降解高度抗性植物聚合物的机制对工业上生物质能源转化和生物仿生设计有重要的借鉴和指导价值。白蚁和其共生微生物产生的木质纤维素酶在其转化利用木质纤维素上发挥着重要作用。本文从来源作用方面对白蚁自身及其肠道原虫、细菌和真菌产生的纤维素酶、木聚糖酶和漆酶等酶研究概况进行了总结,对其存在的问题和前景进行了展望。本综述有助于全面了解白蚁消化系统木质纤维素酶的基因种类、来源、分布、表达以及酶活性和功能。  相似文献   
8.
【目的】营发酵单胞菌属Dysgonomonas是黄翅大白蚁后肠的第二优势微生物。前期研究中,我们从黄翅大白蚁后肠分离出一种命名为大白蚁营发酵菌的新菌。为深入了解大白蚁营发酵菌在宿主白蚁体内发挥的作用和功能,有必要解析大白蚁营发酵菌的基因组序列信息。【方法】使用Illumina Miseq测序平台获取该菌的全基因组序列,将其全基因组序列经过注释的基因蛋白质序列提交COG和KEGG数据库进行BLASTp比对分析,确定该菌潜在的重要酶类和代谢途径,并对个别纤维素酶活进行检测。【结果】大白蚁营发酵菌整个基因组大小为4655756 bp,GC含量为38.54%,DDBJ数据库登录号为BBXL01000001–BBXL01000078。生物信息学分析结果表明菌株大白蚁营发酵菌具有多个木质纤维素降解酶基因,且具备完整的木质纤维素降解和乙酸、乳酸生成通路。此外发现该菌株中存在与氮源代谢和抵御病原体相关的基因。【结论】本研究首次解析大白蚁营发酵菌的全基因组序列,了解其基因组基本特征,初步探讨了该菌降解木质纤维素的过程,为细菌协助宿主白蚁降解木质纤维素提供了理论基础,同时为该菌可能参与宿主白蚁氮源代谢和抵御病原体入侵提供了依据。  相似文献   
9.
真核生物来源漆酶的异源表达研究进展   总被引:1,自引:0,他引:1  
漆酶属于多铜氧化酶家族中的一种,广泛存在于昆虫、植物、真菌和细菌中。由于其作用的底物范围较广,因此在纺织、制浆、食品以及木质素的降解等方面有广阔的应用前景。但是自然界中的漆酶存在表达量和酶活低、高温易失活等问题,限制了它的应用。对漆酶进行大量高效的异源表达,是解决这一问题的有效途径。近年来,越来越多不同来源的漆酶基因被克隆,并在不同宿主中异源表达。但这些大多局限于实验室研究,还未达到工业化生产的水平。笔者对真核生物来源漆酶的异源表达研究进展进行综述,重点介绍了真核生物来源的漆酶在不同表达系统中的异源表达情况以及在酵母细胞中表达漆酶时提高表达量和酶活性能的方法,以期为研究者们提供参考。  相似文献   
10.
[目的]了解散白蚁头部发红且死亡的原因,探究致病菌特性.[方法]从头部发红的散白蚁中分离菌株、培养并纯化,通过显微形态、革兰氏染色及16S rRNA基因序列分析鉴定菌株种类.进一步探究菌株产生红色素的条件并通过液相色谱和质谱联用等方法鉴定发酵产物.[结果]散白蚁鉴定为栖北散白蚁Reticulitermes speratus.从该白蚁头部分离得到一株产红色素的革兰氏阴性细菌RS.16S rDNA序列分析表明RS菌株为黏质沙雷氏菌Serratiamarcescens.RS菌株不同于其它大多黏质沙雷氏菌,在37℃仍然产生红色素.HPLC检测分析红色素为灵菌红素.[结论]本文首次报道从栖北散白蚁分离纯化一株产生灵菌红素的黏质沙雷氏RS菌,研究结果为灵菌红素的生产及散白蚁生物防治技术的研发提供了新的思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号