首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2454篇
  免费   84篇
  国内免费   58篇
  2023年   10篇
  2022年   13篇
  2021年   32篇
  2020年   24篇
  2019年   40篇
  2018年   30篇
  2017年   34篇
  2016年   29篇
  2015年   60篇
  2014年   123篇
  2013年   114篇
  2012年   107篇
  2011年   113篇
  2010年   85篇
  2009年   84篇
  2008年   73篇
  2007年   107篇
  2006年   88篇
  2005年   82篇
  2004年   76篇
  2003年   79篇
  2002年   76篇
  2001年   56篇
  2000年   50篇
  1999年   60篇
  1998年   51篇
  1997年   45篇
  1996年   48篇
  1995年   68篇
  1994年   54篇
  1993年   26篇
  1992年   60篇
  1991年   45篇
  1990年   40篇
  1989年   44篇
  1988年   47篇
  1987年   38篇
  1986年   28篇
  1985年   25篇
  1984年   54篇
  1983年   49篇
  1982年   57篇
  1981年   49篇
  1980年   31篇
  1979年   33篇
  1978年   14篇
  1977年   21篇
  1976年   4篇
  1974年   6篇
  1973年   5篇
排序方式: 共有2596条查询结果,搜索用时 203 毫秒
991.
Plasmalemma vesicles were purified from 7-day-old wheat ( Triticum aestivum L. cv. Drabant) roots by a) discontinuous sucrose gradient (SG), b) aqueous polymer two-phase partitioning (PP) and c) SG followed by PP (SG + PP). SG-purified plasmalemma preparations were 2-3 fold more contaminated with mitochondria (cytochrome c oxidase, EC 1.9.3.1) when compared to PP and (SG + PP)-purified plasmalemma. The electrostatic surface properties, as measured by 9-aminoacridine fluorescence, were similar in PP and (SG + PP)-purified plasmalemma and different from SG-purified. The latency of the MG-ATPase measured with Triton X-100 was 51, 81 and 82% for SG-, PP- and (SG + PP)-purified plasmalemma vesicles, respectively. The higher latency of the ATPase (and lower specific activity in the absence of Triton X-100) in PP-purified and (SG + PP)-purified preparations was not due to an effect of PEG, since exposure of SG-purified preparations to PEG either in the wash medium or in the ATPase assay medium did not change ATPase activity. It is concluded that SG-purified plasmalemma vesicles are more contaminated than PP-purified preparations and that the former are likely to be leaky. They are, therefore, less suitable for use in studies of transport across the plasmalemma.  相似文献   
992.
The sarcoplasmic reticulum (SR) membranes isolated from rabbit heart were preincubated at pH 6.8 or 7.8 and their Ca2+ pump properties were compared at pH 6.8. The ATP-dependent azide insensitive oxalate-stimulated Ca2+ uptake was reduced more rapidly from the membranes preincubated at 37°C at pH 7.8 than from those preincubated at pH 6.8. The Ca2+–Mg2+-ATPase, and the Ca2+-dependent formation of 110 kDa acylphosphate were also inhibited by the preincubation at the higher pH. Including 1 mM DTT in the preincubation medium reduced the inactivation. The preincubation at 37°C in the presence or absence of DTT caused membranes to become more leaky as the loss of Ca2+ uptake was more rapid than that of ATPase or the acylphosphate formation. The loss of these activities was not accompanied by a breakdown of the protein as monitored in Western blots. It is hypothesized that the SR Ca2+ pump inactivation involves a key-SH group and that the lower pH provides a compensatory protective mechanism for the SR during acidosis.  相似文献   
993.
几种鱼类线粒体ATP酶活性的比较研究   总被引:1,自引:1,他引:0  
本文比较了草鱼(Ctenopharyngodon idellus)瓦氏雅罗鱼(Leucisous waleckii)和鲮鱼(Cirrhinus molitorella)在常、低温驯养时,肝细胞线粒体ATP酶活性;并采用吐温80处理线粒体,观察其对线粒体ATP酶活化能Arrhenius图折点温度的影响,讨论了线粒体ATP酶活性与鱼类低温适应能力的相关性。认为鱼类线粒体ATP酶活化能折点温度在常、低温驯养时的差异程度和鱼的抗寒性能有关;低温驯养时,线粒体ATP酶活化能折点温度的高低和鱼的低温耐受能力有关。  相似文献   
994.
Dynamic interdomain interactions within the Hsp70 protein is the basis for the allosteric and functional properties of Hsp70s. While Hsp70s are generally conserved in terms of structure, allosteric behavior, and some overlapping functions, Hsp70s also contain variable sequence regions which are related to distinct functions. In the Hsp70 sequence, the part with the greatest sequence variation is the C-terminal α-helical lid subdomain of substrate-binding domain (SBDα) together with the intrinsically disordered region. Dynamic interactions between the SBDα and β-sandwich substrate-binding subdomain (SBDβ) contribute to the chaperone functions of Hsp70s by tuning kinetics of substrate binding. To investigate how the C-terminal region of Hsp70 has evolved from prokaryotic to eukaryotic organisms, we tested whether this region can be exchanged among different Hsp70 members to support basic chaperone functions. We found that this region from eukaryotic Hsp70 members cannot substitute for the same region in Escherichia coli DnaK to facilitate normal chaperone activity of DnaK. In contrast, this region from E. coli DnaK and Saccharomyces cerevisiae Hsp70 (Ssa1 and Ssa4) can partially support some roles of human stress inducible Hsp70 (hHsp70) and human cognate Hsp70 (hHsc70). Our results indicate that the C-terminal region from eukaryotic Hsp70 members cannot properly support SBDα–SBDβ interactions in DnaK, but this region from DnaK/Ssa1/Ssa4 can still form some SBDα–SBDβ interactions in hHsp70 or hHsc70, which suggests that the mode for SBDα–SBDβ interactions is different in prokaryotic and eukaryotic Hsp70 members. This study provides new insight in the divergency among different Hsp70 homologs and the evolution of Hsp70s.  相似文献   
995.
996.
Tonoplast vesicles were isolated from tomato (Lycopersicon esculentum Mill.) fruit pericarp and purified on a discontinuous sucrose gradient. ATPase activity was inhibited by nitrate and bafilomycin A1 but was insensitive to vanadate and azide. PPase hydrolytic activity was inhibited by NaF but was insensitive to nitrate, bafilomycin A1 vanadate and azide. Kimetic studies of PPase activity gave an apparent Km, for PP3 of 18 μM. Identical distributions of bafilomycin- and NO3-sensitive ATPase activities within continuous sucrose density gradients, confirmed that bafilomycin-sensitive ATPase activity is a suitable marker for the tonoplast. By comparing the distribution of bafilomycin-sensitive ATPase activity with that of PPase activity, it was possible to locate the PPase enzyme exclusively at the tonoplast. The apparent density of the tonoplast did not change during fruit development. Measurements of tonoplast PPase and ATPase activities during fruit development over a 35-day period revealed an 80% reduction in PPase specific activity and a small decrease in ATPase specific activity. ATP- and PP1-dependent ΔpH generation was measured by the quenching of quinacrine fluorescence in tonoplast vesicles prepared on a discontinuous Dextran gradient. No H+ efflux was detected on the addition of sucrose to energized vesicles. Therefore a H+/sucrose antiport may not be the mechanism of sucrose uptake at the tomato fruit tonoplast. Similar results were obtained with glucose, fructose and sorbitol. The lack of ATP (or PP1) stimulation of [14C]-sucrose uptake also suggested that an antiport was not involved. Initial uptake rates of radiolabelled glucose and fructose were almost double that for sucrose. The inhibition of hexose uptake by p-chloromercuribenzene sulphonate (PCMBS) implicated the involvement of a carrier. Therefore storage of hexose in the tomato fruit vacuole and maintenance of a downhill sucrose concentration gradient into sink cells is likely to be regulated by the activity of sucrose metabolizing enzymes, rather than by energy-requiring uptake mechanisms at the tonoplast.  相似文献   
997.
Calcium ions play an important role in the regulation of stomatal movement and the mechanism underlying this action is yet to be determined. It is suggested that guard cell plasma membrane ATPase is a target for calcium action and that this effect is mediated by calmodulin. In this study, the effects of calcium and two calmodulin antagonists on ATPase activity in a crude homogenate of Commelina communis L. guard cell protoplasts were examined. The homogenate contained Mg2+-dependent, K+-simulated ATPase activity, which was inhibited by CaCl2 while stimulated by the calmodulin antagonists, compound 48/80 and chlorpromazine. The calmodulin antagonists partially reversed the inhibitory effect of calcium ions. The results support the possibility of calmodulin involvement in the regulation of guard cell ATPase activity by calcium ions.  相似文献   
998.
 Vacuolar ATPase (EC 3.6.1.3) and PPase (EC 3.6.1.1) were studied in suspension cells and seedlings from spruce [Picea abies (L.) Karst. Proton transport activity and uncoupler (1 μM nigericin) stimulated substrate hydrolysis were measured in tonoplast enriched membrane vesicles. In suspension cells the vacuolar PPase exhibited 1.8-fold activity of the ATPase. In roots and needles from 12-week-old spruce seedlings the vacuolar PPase was inactive, whereas the ATPase was active. Therefore, we investigated whether the preparation of spruce tonoplast vesicles from roots and needles inactivates the vacuolar PPase but not the ATPase. For this purpose, maize (Zea mays L.) tonoplast membranes exhibiting vacuolar PPase as well as ATPase activity were used as a probe and added to the homogenization medium prior to the preparation of spruce vesicles. The preparation of spruce vesicles was more inhibitory to the vacuolar ATPase than to the PPase. The comparison of vacuolar PPases from spruce suspension cells and maize roots revealed similar enzymatic properties. After isopycnic centrifugation on continuous sucrose gradients the vacuolar PPase from spruce suspension cells co-purified with the vacuolar ATPase. Together, these data show: (1) vacuolar PPases from spruce suspension cells and maize roots are similar, (2) the preparation of tonoplast vesicles from spruce roots and needles does not inactivate the vacuolar PPase, (3) tonoplasts of suspension cultured cells and seedlings from spruce are differentially energized by the vacuolar pyrophosphatase that may indicate a difference in pyrophosphate metabolism between embryogenic and differentiated spruce cells, and (4) tonoplast vesicles from spruce seedlings may allow investigations of the effect of pyrophosphate on the vacuolar ATPase in the absence of vacuolar PPase activity. Received: 2 July 1998 / Accepted: 14 September 1998  相似文献   
999.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   
1000.
A partial complementary DNA (cDNA) (DSA8) for a P-type ATPase was obtained from the halotolerant alga Dunaliella salina (Dunal) Teod. (Chlorophyceae). The cDNA exhibited greater than 90% homology to the cDNA for a H+-ATPase in D. bioculata Butcher. The expression of the gene that corresponded to DSA8 was decreased strongly by increases in NaCl concentration. The expression of a gene that corresponded to another ATPase (DSA1; possibly for a Ca2+-ATPase) from D. salina did not show the same decrease as did the DSA8. However, increased osmotic pressure due to glycerol resulted in the same decrease in the DSA8 gene. Under salt or osmotic stress, the activity of a H+-ATPase from microsomes of this alga also decreased. We suggest that expression of the gene for the plasma membrane H+-ATPase of D. salina is regulated by osmotic pressure rather than by the concentration of NaCl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号