首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ∼ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ∼ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   

2.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ≅ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ≅ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   

3.
4.
5.
Isolated epidermal protoplasts of Commelina communis L. increase in volume in the presence of KCl. Since this swelling is an osmotic phenomenon it reflects K+ influx. ATP slightly decreased the volume of the protoplasts, pointing towards the possibility that K+ uptake is passive. On the other hand abscisic acid (ABA) and sodium orthovanadate increased the swelling, and their effect was reversed by ATP. This may support the suggestion that ABA inhibits the active and ATPase-mediated relase of K+ from epidermal cells. Mg2+-dependent, K+-stimulated ATPase activity was found in the microsomal fraction from epidermal cells. This activity was vandadate sensitive. ABA increased the basal activity in the presence of Mg2+ but inhibited the K+ stimulation.  相似文献   

6.
Abstract. The non-osmotic volume (NOV) of Connnelina communis L. guard cells was estimated by observing the volumes of guard cell protoplasts incubated in mannitol solutions of different solute potential, and applying the Boyle-van't Hoff relation to the results. NOV values of between 517 and 1782 μm3 were obtained for different batches of protoplasts. There was a negative correlation between NOV and apparent protoplast solute contents, and the NOV and solute content were observed to alter when pretreatments affecting stomatal aperture were given. H is hypothesized that changes in guard cell chloroplast starch levels could account for variation in NOV and solute content.
For closed stomata, it is calculated that the NOV could reduce the proportion of the total guard cell volume which is osmotically active by over 40%. Serious inaccuracy may thus result if the NOV is not taken into account in the estimation of guard cell solute potential or solute concentration from measurements of solute levels per cell. The error is maximal at low stomatal apertures.  相似文献   

7.
Plants of Commelina communis L. were grown in culture solution to which NaCl was added for 48 h. The solutions were then replaced with normal medium, so that the plants could recover from the stress. The water potential increased almost to that of the controls during 4 h of recovery, but stomatal resistance stayed high. Cytokinin treatment of leaf discs failed to enhance recovery of stomatal aperture, although it enhanced stomatal recovery of identically treated epidermal tissue. Proline levels in leaves correlated well with stomatal resistance. Incubation of epidermal tissue in D-proline inhibited stomatal opening. NaCl and benzyladenine interacted with the effect of proline, and the effect of abscisic acid and was additive to that of proline.  相似文献   

8.
The basal ATPase activity of 30S dynein, whether obtained by extraction of ciliary axonemes with a high (0.5 M NaCl) or low (1 mM Tris-0.1 mM EDTA) ionic strength buffer is increased by NaCl, NaNO3, and Na acetate, with NaNO3 causing the largest increase. The calmodulin-activated ATPase activity of 30S dynein is also increased by addition of NaCl, NaNO3, or Na acetate, but the effects are less pronounced than on basal activity, so that the calmodulin activation ratio (CAR) decreases to 1.0 as salt concentration increases to 0.2 M. These salts also reduce the CAR of 14S dynein ATPase to 1.0 but by strongly inhibiting the calmodulin-activated ATPase activity and only slightly inhibiting the basal activity. Sodium fluoride differs both quantitatively and qualitatively from the other three salts studied. It inhibits the ATPase activity of both 14S and 30S dyneins at concentrations below 5 mM and, by a stronger inhibition of the calmodulin-activated ATPase activities, reduces the CAR to 1.0. Na acetate does not inhibit axonemal ATPase, nor does it interfere with the drop in turbidity caused by ATP and extracts very little protein from the axonemes. NaCl and, especially, NaNO3, cause a slow decrease in A350 of an axonemal suspension and an inhibition of the turbidity response to ATP. NaF, at concentrations comparable to those that inhibit the ATPase activities of the solubilized dyneins, also inhibits axonemal ATPase activity and the turbidity response. Pretreatment of demembranated axonemes with a buffer containing 0.25 M sodium acetate for 5 min followed by extraction for 5 min with a buffer containing 0.5 M NaCl and resolution of the extracted dynein on a sucrose density gradient generally yields a 30S dynein that is activated by calmodulin in a heterogeneous manner, ie, the "light" 30S dynein ATPase fractions are more activated than the "heavy" 30S dynein fractions. These results demonstrate specific anion effects on the basal and calmodulin-activated dynein ATPase activities, on the extractability of proteins from the axoneme, and on the turbidity response of demembranated axonemes to ATP. They also provide a method that frequently yields 30S dynein fractions with ATPase activities that are activated over twofold by added calmodulin.  相似文献   

9.
Increases in reactive oxygen species and mis-regulation of calcium homeostasis are associated with various physiological conditions and disease states including aging, ischemia, exposure to drugs of abuse, and neurodegenerative diseases. In aged animals, this is accompanied by a reduction in oxidative repair mechanisms resulting in increased methionine oxidation of the calcium signaling protein calmodulin in the brain. Here, we show that oxidation of calmodulin results in an inability to: (1) activate CaMKII; (2) support Thr(286) autophosphorylation of CaMKII; (3) prevent Thr(305/6) autophosphorylation of CaMKII; (4) support binding of CaMKII to the NR2B subunit of the NMDA receptor; and (5) compete with alpha-actinin for binding to CaMKII. Moreover, oxidized calmodulin does not efficiently bind calcium/calmodulin-dependent protein kinase II (CaMKII) in rat brain lysates or in vitro. These observations contrast from past experiments performed with oxidized calmodulin and the plasma membrane calcium ATPase, where oxidized calmodulin binds to, and partially activates the PMCA. When taken together, these data suggest that oxidative stress may perturb neuronal and cardiac function via a decreased ability of oxidized calmodulin to bind, activate, and regulate the interactions of CaMKII.  相似文献   

10.
Demembranated cilia of Tetrahymena pyriformis were extracted with KCl or Tris-EDTA and the crude dyneins from each resolved by sucrose density gradient sedimentation into 14S-K, 30S-K, 14S-E and 30S-E dyneins, respectively. The calmodulin activation ratio (ATPase activity in presence of added calmodulin/ATPase activity in absence of added calmodulin) did not vary across the 30S dynein fractions regardless of the method of extraction nor did it vary across the 14S-E region. However, in going from the “heavy” fractions to the “light” fractions of the 14S-K region, it increased markedly. The concentration of calmodulin required for half-maximal activation did not differ appreciably in the “light” versus the “heavy” fractions of the 14S-K region, suggesting that the affinity for calmodulin does not vary in these fractions. SDS-polyacrylamide gel electrophoresis studies showed the presence of several polypeptides that varied in a systematic fashion across the 14S-K region and hence may be involved in regulating the sensitivity of 14S-K dynein ATPase activity to added calmodulin.  相似文献   

11.
12.
The sizes of organelles are tightly regulated in the cells. However, little is known on how cells maintain the homeostasis of these intracellular compartments. Using cocaine as a model compound, we have characterized the mechanism of deregulated vacuolation in cultured rat liver epithelial Clone 9 cells. The vacuoles were observed as early as 10 min following cocaine treatment. Removal of cocaine led to vacuole degeneration, indicating vacuolation is a reversible process. The vacuoles could devour intracellular materials and the vacuoles originated from late endosome/lysosome as indicated by immunofluorescence studies. Instant calcium influx and calmodulin were required for the initiation of vacuole formation. The unique properties of these late endosome/lysosome-derived vacuoles were further discussed. In summary, cocaine elicited a new type of deregulated vacuole and the involvement of calcium/calmodulin in vacuolation could shed light on prevention or treatment of cocaine-induced cytotoxicity.  相似文献   

13.
Triacontanol (TRIA) treatment of plasma membrane-enriched vesicles from barley ( Hordeum vulgare L., cv. Conquest) roots resulted in stimulation of membrane-associated, divalent cation-dependent ATPase activity (EC 3.6.1.3). The stimulation at physiologically active concentrations of TRIA (10−11–10−9 M ) occurred only when the vesicles were treated with TRIA in the presence of calmodulin. Octacosanol, the C28-analogue of TRIA, had no effect on divalent cation-dependent ATPase activity. Consistent with in vivo studies, simultaneous treatment of vesicles with weight equivalents of TRIA and octacosanol reduced the stimulation of ATPase activity. The effect of calmodulin on the stimulation of ATPase activity was diminished by calmidazolium, a specific inhibitor of calmodulin. Circular dichroism studies did not show a change in the α-helix content of calmodulin in the presence of TRIA. TRIA also had no apparent effect on soluble calcium-calmodulin 3',5'-cyclic nucleotide phosphodiesterase activity. Removal of excess TRIA from the medium after treatment still resulted in stimulation of divalent cation-dependent ATPase activity in the presence of calmodulin was comparable to treated vesicles from which excess TRIA had not been removed. These data further support the contention that TRIA affects membrane structure and function.  相似文献   

14.
15.
The effect of the 5 calmodulin (CaM) antagonists trifluoperazine (TFP). compound 48/80, N-(6-aminohexyl)-naphthalenesulfonamtde (W-5), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and calmidazolium on auxin-dependent medium acidification was investigated in abraded segments of Avena sativa L. cv. Victory I. Buffering capacity, Asn content, and changes in pH of bathing solutions were measured in the presence of these inhibitors. When coleoptiles were treated with TFP or compound 48/80, the Asn content and the buffering capacity increased, thus suggesting that plasma membrane permeability was modified. On the contrary. the effect of calmidazolium, W-5. and W-7 on Asn release and buffering capacity was rather low; only small effects being observable at the highest concentration employed. Calmidazolium and W-7 strongly inhibited auxin-dependent medium acidification. W-5 did not affect medium acidification. The specificity of these CaM antagonists and their effects on medium acidification are discussed. The data adduced is consistent with the working hypothesis which postulates an essential role for the Ca2+-CaM system on auxin-dependent medium acidification.  相似文献   

16.
Liu  Zhihua  Xia  Mian  Poovaiah  B.W. 《Plant molecular biology》1998,38(5):889-897
cDNA clones of chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) from tobacco (TCCaMK-1 and TCCaMK-2) were isolated and characterized. The polypeptides encoded by TCCaMK-1 and TCCaMK-2 have 15 different amino acid substitutions, yet they both contain a total of 517 amino acids. Northern analysis revealed that CCaMK is expressed in a stage-specific manner during anther development. Messenger RNA was detected when tobacco bud sizes were between 0.5 cm and 1.0 cm. The appearance of mRNA coincided with meiosis and became undetectable at later stages of anther development. The reverse polymerase chain reaction (RT-PCR) amplification assay using isoform-specific primers showed that both of the CCaMK mRNAs were expressed in anther with similar expression patterns. The CCaMK protein expressed in Escherichia coli showed Ca2+-dependent autophosphorylation and Ca2+/calmodulin-dependent substrate phosphorylation. Calmodulin isoforms (PCM1 and PCM6) had differential effects on the regulation of autophosphorylation and substrate phosphorylation of tobacco CCaMK, but not lily CCaMK. The evolutionary tree of plant serine/threonine protein kinases revealed that calmodulin-dependent kinases form one subgroup that is distinctly different from Ca2+-dependent protein kinases (CDPKs) and other serine/threonine kinases in plants.  相似文献   

17.
The effect of phytochrome on K+ transport in guard cells of Commelina communis L. was studied following stomatal movement and using the K+−channel blockers tetraethylammonium (TEA), Cs+ and quinidine. TEA and quinidine prevented stomatal opening and closure in red light, but not when it was supplemented with far-red. This indicates that channels that can be blocked by TEA and quinidine are regulated by phytochrome. Evidence for a phytochrome effect on K+ leakage through other membranal compartments was also found. These phytochrome effects are modified by temperature. Elevated temperature decreases the involvement of channels and increases K+ transport through other membrane compartments, while low temperature causes channel opening and diminishes K+ leakage. The interaction between phytochrome effects and those of temperature is discussed.  相似文献   

18.
19.
Summary In many cell systems, the permeability of membrane junctions is modulated by the cytoplasmic level of free Ca++. To examine whether the calcium-dependent regulatory protein calmodulin is involved in this process, the ability of anticalmodulin drugs to influence the cell-to-cell passage of injected current and an organic tracer was tested using standard intracellular glass microelectrode techniques. Several antipsychotics and local anesthetics were found to block junctional communication in the epidermis of the beetleTenebrio molitor. Treatment of the epidermis with chlorpromazine (0.25 mM) raised intercellular resistance two- to threefold within 20 to 25 min; cell-to-cell passage of electrical current was abolished within 41±5 min. Loss of electrotonic coupling was accompanied by a block in the cell-to-cell movement of the organic tracer carboxyfluorescein. The reaction is fully reversible, with normal electrotonic coupling being restored within 2 to 4 hr. Other antipsychotics and local anesthetics had similar effects on cell coupling. The order of potency found was: trifluoperazine>thioridazine> d-butaclamol>chlorprothixine=chlorpromazine> l-butaclamol> dibucaine>tetracaine. The relative uncoupling potencies of these drugs correlate well with their known ability to inhibit calmodulin-dependent phosphodiesterase activity. Other anesthetic compounds, procaine and pentobarbital, did not block cell-to-cell communication. Altering the extracellular Ca++ concentration did not affect the rate of uncoupling by antipsychotics, while chelation of extracellular Ca++ with EGTA raised electrotonic coupling. The effect of three metabolic inhibitors on coupling was also examined. Iodoacetate uncoupled the epidermal cells while DNP and cyanide did not. These results are discussed in terms of possible mechanisms by which calmodulin may control junctional communication in this tissue.  相似文献   

20.
To further study the toxicity of cadmium in the euryhaline alga, Dunaliella bioculata, ATPase activity and Cd2+ interactions were investigated in this species.Ultracytochemical studies showed the presence of ATPase reaction after incubation with Ca2+ and Mg2+, on different cell structures, the cytoplasm, the nucleoplasm, the axoneme and the membrane of the flagellae. In the cytoplasm, the localization of the lead precipates suggests that they are associated with the endoplasmic reticulum.The in vitro measurement of enzyme activity in crude cell extracts obtained by a partial solubilization of deflagellated algae with Triton X100, revealed a high Mg2+ dependent pyrophosphatase activity, a weak Mg2+-ATPase and a Ca2+-ATPase (Km = 0.12 mM) which was little sensitive to vanadate. In these extracts, a Ca2+ dependent ATPase was detected at the level of a double band by a non-denaturing electrophoresis. The same activity was found in the supernatant of sonicated cells in the absence of detergent, which suggests that this ATPase could be a cytosolic enzyme.In plasma membrane fractions, vanadate-sensitive ATPase activity was measured. This reaction was activated either by Mg2+ at relatively low concentrations (Km = 150µm) or by Ca2 +, but required unusually high concentrations of this ion, 50–100 mM.The inhibitory effects of Cd2+ on Ca2+ ATPase activity in cell extracts were compared with those of other cations. The range of toxicity was: Zn2+ > Cd2+ > Cu2+ > La3+ > Co2+. For Cd2+, the IC50 was 42 µM. The nature of inhibition, though, mixed was for the most part competitive, since the competitive constant value (Ki = 7 µM) was lower than the non-competitive constant value (Ki = 35 µM).In plasma membrane fractions, ATPase activity showed a high sensitivity to the heavy metal. It was non-competitively inhibited by cadmium in a narrow range of micromolar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号