首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   828篇
  免费   188篇
  国内免费   116篇
  2024年   1篇
  2023年   38篇
  2022年   26篇
  2021年   69篇
  2020年   76篇
  2019年   92篇
  2018年   78篇
  2017年   75篇
  2016年   72篇
  2015年   78篇
  2014年   68篇
  2013年   45篇
  2012年   56篇
  2011年   44篇
  2010年   36篇
  2009年   46篇
  2008年   49篇
  2007年   49篇
  2006年   33篇
  2005年   26篇
  2004年   8篇
  2003年   13篇
  2002年   12篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有1132条查询结果,搜索用时 434 毫秒
91.
The Bearded Vulture Gypaetus barbatus occurs throughout its range in small and dwindling population fragments with limited genetic differentiation between populations, suggesting that the species might be managed as a single entity. The numbers of East and Southern African Bearded Vultures included in previous studies were small, so we determine the genetic variation within, evolutionary placement of and connectivity among sub‐Saharan African populations. Mitochondrial DNA fragment analyses detected little or no differentiation between populations in Ethiopia and Southern Africa, with reduced haplotype diversity in Southern Africa compared with populations in the Northern Hemisphere. The results inform conservation management of this species globally and locally, and offer guidelines for translocations should populations continue to decline.  相似文献   
92.
93.
In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport.  相似文献   
94.
Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non‐breeding sites (termed migratory network). Using replicated breeding and non‐breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non‐breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature.  相似文献   
95.
Well‐designed and effectively managed networks of marine reserves can be effective tools for both fisheries management and biodiversity conservation. Connectivity, the demographic linking of local populations through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider in marine reserve design, since it has important implications for the persistence of metapopulations and their recovery from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should be informed by larval dispersal and movement patterns of the species for which protection is required. In the past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design. Recent empirical studies using new technologies have also provided fresh insights into movement patterns of many species and redefined our understanding of connectivity among populations through larval dispersal. Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km (e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres (e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self‐recruitment is common. Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes will be required depending on which species require protection, how far they move, and if other effective protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located to accommodate movement patterns among these. We also provide practical advice for practitioners on how to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within broader ecological, socioeconomic and management contexts.  相似文献   
96.
The Southern Ocean contains some of the most isolated islands on Earth, and fundamental questions remain regarding their colonization and the connectivity of their coastal biotas. Here, we conduct a genetic investigation into the Cellana strigilis (limpet) complex that was originally classified based on morphological characters into six subspecies, five of which are endemic to the New Zealand (NZ) subantarctic and Chatham islands (44–52°S). Previous genetic analyses of C. strigilis from six of the seven island groups revealed two lineages with little or no within‐lineage variation. We analysed C. strigilis samples from all seven island groups using two mitochondrial (COI and 16S), one nuclear (ATPase β) and 58 loci from four randomly amplified polymorphic DNA markers (RAPDs) and confirmed the existence of two distinct lineages. The pronounced genetic structuring within each lineage and the presence of private haplotypes in individual islands are the result of little genetic connectivity and therefore very high self‐recruitment. This study supports the significance of the subantarctic islands as refugia during the last glacial maximum and adds to the knowledge of contemporary population connectivity among coastal populations of remote islands in large oceans and the distance barrier to gene flow that exists in the sea (despite its continuous medium) for most taxa.  相似文献   
97.
Habitat fragmentation can restrict geneflow, reduce neighbourhood effective population size, and increase genetic drift and inbreeding in small, isolated habitat remnants. The extent to which habitat fragmentation leads to population fragmentation, however, differs among landscapes and taxa. Commonly, researchers use information on the current status of a species to predict population effects of habitat fragmentation. Such methods, however, do not convey information on species-specific responses to fragmentation. Here, we compare levels of past population differentiation, estimated from microsatellite genotypes, with contemporary dispersal rates, estimated from multi-strata capture-recapture models, to infer changes in mobility over time in seven sympatric, forest-dependent bird species of a Kenyan cloud forest archipelago. Overall, populations of sedentary species were more strongly differentiated and clustered compared to those of vagile ones, while geographical patterning suggested an important role of landscape structure in shaping genetic variation. However, five of seven species with broadly similar levels of genetic differentiation nevertheless differed substantially in their current dispersal rates. We conclude that post-fragmentation levels of vagility, without reference to past population connectivity, may not be the best predictor of how forest fragmentation affects the life history of forest-dependent species. As effective conservation strategies often hinge on accurate prediction of shifts in ecological and genetic relationships among populations, conservation practices based solely upon current population abundances or movements may, in the long term, prove to be inadequate.  相似文献   
98.
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note - that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species' movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.  相似文献   
99.
Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.  相似文献   
100.
Punctuated antigenic change is believed to be a key element in the evolution of influenza A; clusters of antigenically similar strains predominate worldwide for several years until an antigenically distant mutant emerges and instigates a selective sweep. It is thought that a region of East-Southeast Asia with year-round transmission acts as a source of antigenic diversity for influenza A and seasonal epidemics in temperate regions make little contribution to antigenic evolution. We use a mathematical model to examine how different transmission regimes affect the evolutionary dynamics of influenza over the lifespan of an antigenic cluster. Our model indicates that, in non-seasonal regions, mutants that cause significant outbreaks appear before the peak of the wild-type epidemic. A relatively large proportion of these mutants spread globally. In seasonal regions, mutants that cause significant local outbreaks appear each year before the seasonal peak of the wild-type epidemic, but only a small proportion spread globally. The potential for global spread is strongly influenced by the intensity of non-seasonal circulation and coupling between non-seasonal and seasonal regions. Results are similar if mutations are neutral, or confer a weak to moderate antigenic advantage. However, there is a threshold antigenic advantage, depending on the non-seasonal transmission intensity, beyond which mutants can escape herd immunity in the non-seasonal region and there is a global explosion in diversity. We conclude that non-seasonal transmission regions are fundamental to the generation and maintenance of influenza diversity owing to their epidemiology. More extensive sampling of viral diversity in such regions could facilitate earlier identification of antigenically novel strains and extend the critical window for vaccine development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号