首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bearded vulture populations in the Western Palearctic have experienced a severe decline during the last two centuries that has led to the near extinction of the species in Europe. In this study we analyse the sequence variation at the mitochondrial control region throughout the species range to infer its recent evolutionary history and to evaluate the current genetic status of the species. This study became possible through the extensive use of museum specimens to study populations now extinct. Phylogenetic analysis revealed the existence of two divergent mitochondrial lineages, lineage A occurring mainly in Western European populations and lineage B in African, Eastern European and Central Asian populations. The relative frequencies of haplotypes belonging to each lineage in the different populations show a steep East-West clinal distribution with maximal mixture of the two lineages in the Alps and Greece populations. A genealogical signature for population growth was found for lineage B, but not for lineage A; futhermore the Clade B haplotypes in western populations and clade A haplo-types in eastern populations are recently derived, as revealed by their peripheral location in median-joining haplotype networks. This phylogeographical pattern suggests allopatric differentiation of the two lineages in separate Mediterranean and African or Asian glacial refugia, followed by range expansion from the latter leading to two secondary contact suture zones in Central Europe and North Africa. High levels of among-population differentiation were observed, although these were not correlated with geographical distance. Due to the marked genetic structure, extinction of Central European populations in the last century re-sulted in the loss of a major portion of the genetic diversity of the species. We also found direct evidence for the effect of drift altering the genetic composition of the remnant Pyrenean population after the demographic bottleneck of the last century. Our results argue for the management of the species as a single population, given the apparent ecological exchangeability of extant stocks, and support the ongoing reintroduction of mixed ancestry birds in the Alps and planned reintroductions in Southern Spain.  相似文献   

2.
Infraspecific genetic differentiation was analysed in two tetraploid annual bromegrasses,Bromus lanceolatus (from N Africa) andB. hordeaceus (from N Africa and France). Genetic analysis of populations was based on allozyme polymorphisms at 17 loci. Different fixed heterozygous phenotypes were scored in both species, according to their allopolyploid origin. In N Africa, more variation occurred among populations ofB. lanceolatus than ofB. hordeaceus. The variation was not randomly distributed among populations of both species. InB. lanceolatus, differentiation was correlated with climatic variables rather than with geographic distance between populations. Higher correlation of genetic differentiation with geographic distance occurred inB. hordeaceus, particularly at large geographic scale, between French and N African populations. Within each region, the populations appeared weakly genetically differentiated, even when belonging to different subspecies.  相似文献   

3.
The fungus gnat, Bradysia difformis (Sciaridae: Diptera) has recently been recorded for the first time from South Africa where it has been found in forestry nurseries. The presence of this insect in all the major forestry nurseries as the dominant and only sciarid species raises intriguing questions regarding its origin and population genetic structure. A 395 bp portion of the mitochondrial COI gene was analysed from B. difformis individuals collected from four nursery populations in South Africa and three nursery populations in Europe. Shared haplotypes between South African and European populations indicated a historical connection. South African populations showed high genetic diversity and low genetic differentiation. These patterns most likely reflect multiple and/or relatively large introductions of B. difformis into South Africa from its origin combined with subsequent and continued movement of plants between nurseries.  相似文献   

4.
Dangasuk OG  Gudu S 《Hereditas》2000,133(2):133-145
The objectives of this study were (1) to investigate the genetic variability; and (2) to determine the phylogenetic relationship in the leguminous tree Faidherbia albida through out its range of distribution in East, West and Southern Africa. A total of 16 populations were subjected to enzyme electrophoresis and 6 enzyme systems (Adh, Mdh, G6pdh, Idh, 6Pgdh, and alpha-Est) encoded by 12 loci were scored. A total of fifty one different alleles were detected, with an average of 2.5 alleles per locus. Forty three percent of the loci were polymorphic at a 95% criterion. The average expected heterozygosity (gene diversity index H(e)) was 0.141. All provenances showed significant deviation from Hardy-Weinberg expectation. The UPGMA cluster analysis, based on Modified Rogers distance revealed close similarities between Eastern and Southern African provenances, except Debre zeit from Ethiopia, which was closest to West African populations than to the East African populations. Also, Bignona from West Africa was peculiarly closer to East African provenances. Differentiation of West African populations from Eastern and Southern African provenances was quite evident, emphasising the clinical pattern of variation in these two major geographical races of F. albida in Africa. Wright's F-statistics showed an overall significant deficit of heterozygotes, a common feature in mixed mating, entomophilous, widespread species such as F. albida. The dendrogram analysis showed wide separation among the three Ethiopian provenances indicating a high level of genetic differentiation and diversity among them.  相似文献   

5.
The Chestnut‐banded Plover Charadrius pallidus is a Near‐Threatened shorebird species endemic to mainland Africa. We examined levels of genetic differentiation between its two morphologically and geographically distinct subspecies, C. p. pallidus in southern Africa (population size 11 000–16 000) and C. p. venustus in eastern Africa (population size 6500). In contrast to other plover species that maintain genetic connectivity over thousands of kilometres across continental Africa, we found profound genetic differences between remote sampling sites. Phylogenetic network analysis based on four nuclear and two mitochondrial gene regions, and population genetic structure analyses based on 11 microsatellite loci, indicated strong genetic divergence, with 2.36% mitochondrial sequence divergence between individuals sampled in Namibia (southern Africa) and those of Kenya and Tanzania (eastern Africa). This distinction between southern and eastern African populations was also supported by highly distinct genetic clusters based on microsatellite markers (global FST = 0.309,  = 0.510, D = 0.182). Behavioural factors that may promote genetic differentiation in this species include habitat specialization, monogamous mating behaviour and sedentariness. Reliance on an extremely small number of saline lakes for breeding and limited dispersal between populations are likely to promote reproductive and genetic isolation between eastern and southern Africa. We suggest that the two Chestnut‐banded Plover subspecies may warrant elevation to full species status. To assess this distinction fully, additional sample collection will be needed, with analysis of genetic and phenotypic traits from across the species’ entire breeding range.  相似文献   

6.
Genetic variation has been assessed in 30 populations (931 families) ofFaidherbia albida (Leguminosae, Mimosoideae) from across its entire African range, using six isozyme loci identified by five enzyme systems. Among the populations studied a null allele was proposed to explain the absence ofLap-1 activity in populations from southern and eastern Africa. The mean percentage of polymorphic loci per population, the mean number of alleles per locus and the mean genetic diversity within populations were 31.7%, 1.6 and 0.127 respectively. Genetic diversity was greatest in populations from West Africa and lowest in populations from eastern/southern Africa, with Ethiopian/Sudanese populations intermediate. The overall degree of genetic differentiation between populations (GST) indicated that approximately 56% of the enzyme variation resided within populations. Clustering of Nei's unbaised genetic distances calculated between all populations produced a dendrogram that generally followed the geographic distribution of the populations. Two major groups were identified that may be considered the eastern/southern African and the Ethiopian/West African clusters. Within the Ethiopian/West African cluster two subclusters could be recognised, one broadly corresponding to those populations from Ethiopia/Sudan and the other to those populations from West Africa. The implications of these results for theories regarding the origin ofF. albida in Africa are discussed.  相似文献   

7.
Scattered populations of the same tree species in montane forests through Africa have led to speculations on the origins of distributions. Here, we inferred the colonization history of the Afromontane tree Prunus africana using seven chloroplast DNA loci to study 582 individuals from 32 populations sampled in a range-wide survey from across Africa, revealing 22 haplotypes. The predominant haplotype, HT1a, occurred in 13 populations of eastern and southern Africa, while a second common haplotype, HT1m, occurred in populations of western Uganda and western Africa. The high differentiation observed between populations in East Africa was unexpected, with stands in western Uganda belonging with the western African lineage. High genetic differentiation among populations revealed using ordered alleles (N(ST) = 0.840) compared with unordered alleles (G(ST) = 0.735), indicated a clear phylogeographic pattern. Bayesian coalescence modelling suggested that 'east' and 'west' African types likely split early during southward migration of the species, while further more recent splitting events occurred among populations in the East of the continent. The high genetic similarity found between western Uganda and west African populations indicates that a former Afromontane migration corridor may have existed through Equatorial Africa.  相似文献   

8.
Climatic oscillations influence the distribution of species in time. Thermophilic species survived the ice ages in refugia around the Mediterranean. Northern Africa is one of the possibly important refugia. In this study we test the genetic differentiation between northern African and European populations, using the marbled white butterfly species complex, Melanargia galathea/M. lachesis, as a model. We studied 18 allozyme loci in 876 individuals from 23 populations representing a major part of Europe (northern Spain to Romania) and the western part of northern Africa (Atlas Mountains). The African populations resemble the European ones in allelic richness; their genetic diversity is higher than in Europe. Cluster analysis discriminated five European genetic groups: M. lachesis, a western European lineage, and three eastern European lineages. However, the African samples did not form a separate cluster within this phenogram, but clustered randomly within the Balkan/southeastern European groups. The genetic differentiation among the African populations (FST 8.8%) was higher than that within any of the European lineages (FST 2.6–5.5%). The high genetic diversity and the relatively strong differentiation of the four African populations sampled in a comparatively limited area of the Atlas Mountains indicate that the most probable origin of M. galathea is northern Africa, with its sibling species, M. lachesis, evolving in parallel in Iberia. Most probably, M. galathea colonised Europe first during the Eem interglacial, some 130 ky ago. Since M. lachesis must have existed on the Iberian peninsula during that period already, M. galathea should have reached Europe via Italy. The genetic differentiation to distinct groups in Europe most probably evolved during the following Würm glacial period.  相似文献   

9.
Allelic frequencies at five polymorphic loci were determined in seven European and six Afrotropical populations of Drosophila melanogaster. African populations, which may be considered as ancestral for the species, showed a greater genetic diversity as measured by the number of alleles found. Within each geographic group (Europe or tropical Africa) genetic distances between local populations were very small (D=0.027). By contrast, the average distance between European and African populations (D=0.389) was more than 12 times bigger. It was previously known that various morphological or physiological differences, which probably reflect genetic adaptations to different environments, exist between these temperate and tropical populations. Data presented here suggest that the divergence in allozyme frequencies also reflects some selective mechanisms.  相似文献   

10.
Two clades of the lesser Egyptian jerboa Jaculus jaculus sensu lato were recently described in North Africa and considered as cryptic species. Members of both clades are also found in Israel, where they can be easily identified according to fur and tail colouration and morphology of the male external genitalia, but cannot be separated confidently using skull characters. Examination of type specimens demonstrated that the correct names for the two species are Jaculus jaculus (Linnaeus 1758) and Jaculus hirtipes (Lichtenstein, 1823). Comparisons of geographic and habitat differences of the two species revealed a high niche divergence between them, slightly higher in the sympatric North African populations than in the parapatric populations of Israel and Sinai. A low niche divergence was detected between North African and Middle Eastern populations of J. jaculus, and a low niche convergence between North African and Middle Eastern populations of J. hirtipes. The levels of niche differentiation coincide with those of genetic differences.  相似文献   

11.
The Cape buffalo (Syncerus caffer caffer) is one of the dominant and most widespread herbivores in sub‐Saharan Africa. High levels of genetic diversity and exceptionally low levels of population differentiation have been found in the Cape buffalo compared to other African savannah ungulates. Patterns of genetic variation reveal large effective population sizes and indicate that Cape buffalos have historically been interbreeding across considerable distances. Throughout much of its range, the Cape buffalo is now largely confined to protected areas due to habitat fragmentation and increasing human population densities, possibly resulting in genetic erosion. Ten buffalo populations in Kenya and Uganda were examined using seventeen microsatellite markers to assess the regional genetic structure and the effect of protected area size on measures of genetic diversity. Two nested levels of genetic structure were identified: a higher level partitioning populations into two clusters separated by the Victoria Nile and a lower level distinguishing seven genetic clusters, each defined by one or two study populations. Although relatively small geographic distances separate most of the study populations, the level of genetic differentiation found here is comparable to that among pan‐African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more active management of such populations. Our findings raise concerns about the future of other African savannah ungulates with lower population sizes and inferior dispersal capabilities compared with the buffalo.  相似文献   

12.
Current population genetic models fail to cope with genetic differentiation for species with large, contiguous and heterogeneous distribution. We show that in such a case, genetic differentiation can be predicted at equilibrium by circuit theory, where conductance corresponds to abundance in species distribution models (SDMs). Circuit‐SDM approach was used for the phylogeographic study of the lepidopteran cereal stemborer Busseola fuscaFüller (Noctuidae) across sub‐Saharan Africa. Species abundance was surveyed across its distribution range. SDMs were optimized and selected by cross‐validation. Relationship between observed matrices of genetic differentiation between individuals, and between matrices of resistance distance was assessed through Mantel tests and redundancy discriminant analyses (RDAs). A total of 628 individuals from 130 localities in 17 countries were genotyped at seven microsatellite loci. Six population clusters were found based on a Bayesian analysis. The eastern margin of Dahomey gap between East and West Africa was the main factor of genetic differentiation. The SDM projections at present, last interglacial and last glacial maximum periods were used for the estimation of circuit resistance between locations of genotyped individuals. For all periods of time, when using either all individuals or only East African individuals, partial Mantel r and RDA conditioning on geographic distance were found significant. Under future projections (year 2080), partial r and RDA significance were different. From this study, it is concluded that analytical solutions provided by circuit theory are useful for the evolutionary management of populations and for phylogeographic analysis when coalescence times are not accessible by approximate Bayesian simulations.  相似文献   

13.
The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000–12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern‐East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000–67 000 ya using an average mammalian microsatellite mutation rate and at 4700–44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70–110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity.  相似文献   

14.
Phytophagous insects of the genus Bactrocera are among the most economically important invasive fruit fly pests. In 2003, an unknown Bactrocera species was found in Kenya. First identified as an ‘aberrant form’ of the Asian B. dorsalis complex, it was later recognized as a new species, Bactrocera invadens. Within 2 years of its discovery, the species was recorded in several African countries, becoming an important quarantine pest. As this invasive fly was discovered only recently, no data are available on its invasion pattern in Africa. This pilot study attempts to infer from genetic data the dynamic aspects of the African invasion of this pest. Using microsatellite markers, we evaluated the level of genetic diversity and the extent of common ancestry among several African populations collected across the invaded areas. A sample from the Asian Sri Lankan population was analysed to confirm the Asian origin of this pest. Genetic data cast no doubt that Sri Lanka belongs to the native range, but only a small percentage of its genotypes can be found in Africa. African populations display relatively high levels of genetic diversity associated with limited geographical structure and no genetic footprints of bottlenecks. These features are indicative of processes of rapid population growth and expansion with possible multiple introductions. In the span of relatively few years, the African invasion registered the presence of at least two uncorrelated outbreaks, both starting from the East. The results of the analyses support that invasion started in East Africa, where B. invadens was initially isolated.  相似文献   

15.
Anopheles melas is a brackish water–breeding member of the Anopheles gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analysed 15 microsatellite markers and 1161 bp of mtDNA in 11 A. melas populations collected throughout its range. Compared with its sibling species A. gambiae, A. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat that is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three A. melas clusters is on par with levels of divergence between other species of the A. gambiae complex, and no support for monophyly was observed in a maximum‐likelihood phylogenetic analysis. Finally, an approximate Bayesian analysis of microsatellite data indicates that Bioko Island A. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10 000–11 000 bp ). This study has exposed species‐level genetic divergence within A. melas and also has implications for control of this malaria vector.  相似文献   

16.
We report patterns of genetic variation based on microsatellite, allozyme and mitochondrial control region markers in nyala from geographic locations sampled in South Africa, Mozambique, Malawi and Zimbabwe. Highly significant differences were observed among allele frequencies at three microsatellite loci between populations from KwaZulu-Natal, Limpopo and Malawi, with the Malawi and KwaZulu-Natal groupings showing the highest differentiation (RST=0.377). Allozyme frequencies showed minor, non-statistically significant regional differences among the South African populations, with maximum FST values of 0.048–0.067. Mitochondrial DNA analyses indicated a unique haplotype in each location sampled. Since none of these indices of population differentiation showed significant correlation to absolute geographic distance, we conclude that geographic variation in this species is probably a function of a distribution pattern stemming from habitat specificity. It is suggested that translocations among geographically distant regional populations be discouraged at present, pending a more elaborate investigation. Transfer of native individuals among local populations may, however, be required for minimizing the likelihood of inbreeding depression developing in small captive populations.  相似文献   

17.
Lactase persistence (LP), the ability to digest lactose into adulthood, is strongly associated with the cultural traits of pastoralism and milk-drinking among human populations, and several different genetic variants are known that confer LP. Recent studies of LP variants in Southern African populations, with a focus on Khoisan-speaking groups, found high frequencies of an LP variant (the C-14010 allele) that also occurs in Eastern Africa, and concluded that the C-14010 allele was brought to Southern Africa via a migration of pastoralists from Eastern Africa. However, this conclusion was based on indirect evidence; to date no study has jointly analyzed data on the C-14010 allele from both Southern African Khoisan-speaking groups and Eastern Africa. Here, we combine and analyze published data on the C-14010 allele in Southern and Eastern African populations, consisting of haplotypes with the C-14010 allele and four closely-linked short tandem repeat loci. Our results provide direct evidence for the previously-hypothesized Eastern African origin of the C-14010 allele in Southern African Khoisan-speaking groups. In addition, we find evidence for a separate introduction of the C-14010 allele into the Bantu-speaking Xhosa. The estimated selection intensity on the C-14010 allele in Eastern Africa is lower than that in Southern Africa, which suggests that in Eastern Africa the dietary changes conferring the fitness advantage associated with LP occurred some time after the origin of the C-14010 allele. Conversely, in Southern Africa the fitness advantage was present when the allele was introduced, as would be expected if pastoralism was introduced concomitantly. Am J Phys Anthropol 156:661–664, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Phylogenetic placement of bottlenose dolphins from Zanzibar, East Africa and putative population differentiation between animals found off southern and northern Zanzibar were examined using variation in mtDNA control region sequences. Samples (n= 45) from animals bycaught in fishing gear and skin biopsies collected during boat surveys were compared to published sequences (n= 173) of Indo‐Pacific bottlenose dolphin, Tursiops aduncus, from southeast Australian waters, Chinese/Indonesian waters, and South African waters (which recently was proposed as a new species) and to published sequences of common bottlenose dolphin, Tursiops truncatus. Bayesian and maximum parsimony analyses indicated a close relationship between Zanzibar and South African haplotypes, which are differentiated from both Chinese/Indonesian and Australian T. aduncus haplotypes. Our results suggest that the dolphins found off Zanzibar should be classified as T. aduncus alongside the South African animals. Further, analyses of genetic differentiation showed significant separation between the T. aduncus found off northern and southern Zanzibar despite the relatively short distance (approximately 80 km) between these areas. Much less differentiation was found between southern Zanzibar and South Africa, suggesting a more recent common evolutionary history for these populations than for the northern and southern Zanzibar populations.  相似文献   

19.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

20.
The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号