首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   47篇
  国内免费   42篇
  2023年   15篇
  2022年   9篇
  2021年   9篇
  2020年   11篇
  2019年   23篇
  2018年   13篇
  2017年   15篇
  2016年   16篇
  2015年   16篇
  2014年   19篇
  2013年   33篇
  2012年   13篇
  2011年   22篇
  2010年   8篇
  2009年   19篇
  2008年   18篇
  2007年   23篇
  2006年   21篇
  2005年   10篇
  2004年   12篇
  2003年   22篇
  2002年   13篇
  2001年   5篇
  2000年   13篇
  1999年   12篇
  1998年   10篇
  1997年   3篇
  1996年   9篇
  1995年   7篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有431条查询结果,搜索用时 187 毫秒
61.
A bacterium, Eubacterium rectale IIIH, which possessed arylsulfotransferase (ASST) activity was isolated from human feces. The ASST gene (astA) was cloned and the corresponding protein partially characterized. This gene shows only moderate homology to the previously sequenced ASST genes of Klebsiella and Enterobacter, which are very closely related to each other. Journal of Industrial Microbiology & Biotechnology (2000) 25, 305–309. Received 02 August 2000/ Accepted in revised form 19 November 2000  相似文献   
62.
Pigment epithelium-derived factor (PEDF) is a serpin found in the interphotoreceptor matrix of the eye, which, although not a proteinase inhibitor, possesses a number of important biological properties, including promotion of neurite outgrowth and differential expression in quiescent versus senescent states of certain cell types. The low amounts present in the eye, together with the impracticality of using the eye as a source for isolation of the human protein, make it important to establish a system for overexpression of the recombinant protein for biochemical and biological studies. We describe here the expression and secretion of full-length glycosylated human recombinant PEDF at high levels (> 20 micrograms/ mL) into the growth medium of baby hamster kidney cells and characterization of the purified rPEDF by circular dichroism and fluorescence spectroscopies and neurite outgrowth assay. By these assays, the recombinant protein behaves as expected for a correctly folded full-length human PEDF. The availability of milligram amounts of PEDF has permitted quantitation of its heparin binding properties and of the effect of reactive center cleavage on the stability of PEDF towards thermal and guanidine hydrochloride denaturation.  相似文献   
63.
64.
Potato (Solanum tuberosum cv. Désirée) plants expressing yeast invertase directed either to the apoplast, vacuole or cytosol were biochemically and physiologically characterised. All lines of transgenic plants showed similarities to plants growing under water stress. Transformants were retarded in growth, and accumulated hexoses and amino acids, especially proline, to levels up to 40-fold higher than those of the wild types. In all transformants rates of CO2 assimilation and leaf conductance were reduced. From the unchanged intercellular partial pressure of CO2 and apoplastic cis-abscisic acid (ABA) content of transformed leaves it was concluded that the reduced rate of CO2 assimilation was not caused by a limitation in the availability of CO2 for␣the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). In the transformants the amount of Rubisco protein was not reduced, but both activation state and carboxylation efficiency of photosynthesis were lowered. In vacuolar and cytosolic transformants this inhibition of Rubisco might be caused by a changed ratio of organic bound and inorganic phosphate, as indicated by a doubling of phosphorylated intermediates. But in apoplastic transformants the pattern of phosphorylated intermediates resembled that of leaves of water-stressed potato plants, although the cause of inhibition of photosynthesis was not identical. Whereas in water-stressed plants increased contents of the phytohormone ABA are supposed to mediate the adaptation to water stress, no contribution of ABA to reduction of photosynthesis could be detected in invertase transformants. Received: 29 May 1996 / Accepted: 30 December 1996  相似文献   
65.
66.
Summary. Fatty acid amide hydrolase (FAAH), a membrane-anchored enzyme responsible for the termination of endocannabinoid signalling, is an attractive target for treating conditions such as pain and anxiety. Inhibitors of the enzyme, optimized using rodent FAAH, are known but their pharmacology and medicinal chemistry properties on the human FAAH are missing. Therefore recombinant human enzyme would represent a powerful tool to evaluate new drug candidates. However, the production of high amounts of enzyme is hampered by the known refractiveness of FAAH to overexpression. Here, we report the successful overexpression of rat and human FAAH as a fusion to the E. coli maltose-binding protein, retaining catalytic properties of native FAAH. Several known FAAH inhibitors were tested and differences in their potencies toward the human and rat FAAH were found, underscoring the importance of using a human FAAH in the development of inhibitors. Authors’ address: Didier M. Lambert, Unité de Chimie pharmaceutique et de Radiopharmacie, Université catholique de Louvain, Avenue E. Mounier 73.40, 1200 Bruxelles, Belgique  相似文献   
67.
Earlier we have shown the role of glyoxalase overexpression in conferring salinity tolerance in transgenic tobacco. We now demonstrate the feasibility of same in a crop like rice through overproduction of glyoxalase II. The rice glyoxalase II was cloned in pCAMBIA1304 and transformed into rice (Oryza sativa cv PB1) via Agrobacterium. The transgenic plants showed higher constitutive activity of glyoxalase II that increased further upon salt stress, reflecting the upregulation of endogenous glyoxalase II. The transgenic rice showed higher tolerance to toxic concentrations of methylglyoxal (MG) and NaCl. Compared with non-transgenics, transgenic plants at the T1 generation exhibited sustained growth and more favorable ion balance under salt stress conditions. Sneh L. Singla-Pareek and Sudesh Kumar Yadav have contributed equally to this work.  相似文献   
68.
Zhang H  Han Y  Tao J  Liu S  Yan C  Li S 《Experimental cell research》2011,(20):2904-2913
The migration of vascular endothelial cells plays a critical role in a variety of vascular physiological and pathological processes, such as embryonic development, angiogenesis, wound healing, re-endothelialization, and vascular remodeling. This study clarified the role and mechanism of a new vascular homeostasis regulator, Cellular repressor of E1A-stimulated genes (CREG), in the migration of primary human umbilical vein endothelial cells (HUVECs). A wound healing assay and transwell migration model showed that upregulation of CREG expression induced HUVEC migration and it was positively correlated with the expression of vascular endothelial growth factor. Furthermore, wild type integrin-linked kinase reversed the poor mobility of CREG knock-down HUVECs; in contrast, kinase-dead integrin-linked kinase weakened the migration of HUVECs. We also studied the effect of CREG on HUVEC migration by the addition of an mTOR inhibitor, recombinant vascular endothelial growth factor165, neutralizing antibody of vascular endothelial growth factor165 and AKT siRNA, and we concluded that CREG induces endothelial cell migration by activating the integrin-linked kinase/AKT/mTOR/VEGF165 signaling pathway.  相似文献   
69.
70.
In the production of chemicals via microbial fermentation, achieving a high yield is one of the most important objectives. We developed a statistical model to analyze influential factors that determine product yield by compiling data obtained from engineered Escherichia coli developed within last 10 years. Using both numerical and ordinal variables (e.g., enzymatic steps, cultivation conditions, and genetic modifications) as input parameters, our model revealed that cultivation modes, nutrient supplementation, and oxygen conditions were the three significant factors for improving product yield. Generally, the model showed that product yield decreases as the number of enzymatic steps in the biosynthesis pathway increases (7-9% loss of yield per enzymatic step). Moreover, overexpression of enzymes or removal of competitive pathways (e.g., knockout) does not necessarily result in an amplification of product yield (P-value>0.1), possibly because of limited capacity in the biosynthesis pathway to accommodate an increase in flux. The model not only provides general guidelines for metabolic engineering and fermentation processes, but also allows a priori estimation and comparison of product yields under designed cultivation conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号