首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   29篇
  国内免费   15篇
  2023年   10篇
  2022年   9篇
  2021年   17篇
  2020年   29篇
  2019年   13篇
  2018年   16篇
  2017年   17篇
  2016年   8篇
  2015年   15篇
  2014年   8篇
  2013年   33篇
  2012年   19篇
  2011年   14篇
  2010年   6篇
  2009年   18篇
  2008年   17篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
61.
62.
Abstract. A brief high temperature treatment (45 C) promoted anthocyanin synthesis in 2-d-old dark-grown red cabbage seedlings. The increased effectiveness of a temperature/red light treatment as opposed to the reverse sequence suggests that an elevated temperature 'induces' some component which facilitates the phytochrome response.  相似文献   
63.
In petals of Silene dioica, gene P controls the 3′-hydroxylation of the anthocyanin B-ring and the hydroxylation pattern of the hydroxycinnamoyl acyl group bound to the 4″'-hydroxyl group of rhamnose of anthocyanidin 3-rhamnosyl(1→6)glucoside-5-glucoside. In this paper, experiments are presented which show that gene P is involved in the hydroxylation of p-coumaroyl-CoA to caffeoyl-CoA, which is then used both as a precursor in anthocyanin biosynthesis and as a substrate for the final acylation.  相似文献   
64.
Yoshida K  Kitahara S  Ito D  Kondo T 《Phytochemistry》2006,67(10):992-998
The Himalayan blue poppy, Meconopsis grandis, has sky blue-colored petals, although the anthocyanidin nucleus of the petal pigment is cyanidin. The blue color development in this blue poppy involving ferric ions was therefore studied. We analyzed the vacuolar pH, and the organic and inorganic components of the colored cells. A direct measurement by a proton-selective microelectrode revealed that the vacuolar pH value was 4.8. The concentrations of the total anthocyanins in the colored cells were around 5mM, and ca. three times more concentrated flavonols were detected. Fe was detected by atomic analysis of the colored cells, and the ratio of Fe to anthocyanins was ca. 0.8 eq. By mixing the anthocyanin, flavonol and metal ion components in a buffered aq. solution at pH 5.0, we were able to reproduce the same blue color; the visible absorption spectrum and CD were identical to those in the petals, with Fe(3+), Mg(2+) and flavonol being essential for the blue color. The blue pigment in Meconopsis should be a new type of metal complex pigment that is different from a stoichiometric supramolecular pigment such as commelinin or protocyanin.  相似文献   
65.
Mori M  Kondo T  Toki K  Yoshida K 《Phytochemistry》2006,67(6):622-629
The dicaffeoyl anthocyanin, phacelianin, was isolated from blue petals of Phacelia campanularia. Its structure was determined to be 3-O-(6-O-(4'-O-(6-O-(4'-O-beta-d-glucopyranosyl-(E)-caffeoyl)-beta-d-glucopyranosyl)-(E)-caffeoyl)-beta-d-glucopyranosyl)-5-O-(6-O-malonyl-beta-d-glucopyranosyl)delphinidin. The CD of the blue petals of the phacelia showed a strong negative Cotton effect and that of the suspension of the colored protoplasts was the same, indicating that the chromophores of phacelianin may stack intermolecularly in an anti-clockwise stacking manner in the blue-colored vacuoles. In a weakly acidic aqueous solution, phacelianin displayed the same blue color and negative Cotton effect in CD as those of the petals. However, blue-black colored precipitates gradually formed without metal ions. A very small amount of Al(3+) or Fe(3+) may be required to stabilize the blue solution. Phacelianin may take both an inter- and intramolecular stacking form and shows the blue petal color by molecular association and the co-existence of a small amount of metal ions. We also isolated a major anthocyanin from the blue petals of Evolvulus pilosus and revised the structure identical to phacelianin.  相似文献   
66.
67.
Fehr C  Rausher MD 《Molecular ecology》2004,13(7):1839-1847
Although alleles at both the W and A loci in the common morning glory, Ipomoea purpurea, produce similar white-flowered phenotypes, these alleles differ by over an order of magnitude in average frequency. In this initial attempt to determine the causes of this difference, we employed artificial arrays of plants to estimate mating system characteristics (total siring success, selfing rates and contribution to the outcross pollen pool) for the homozygous pigmented and white-flowered genotypes at the A locus. This experiment demonstrates that: (1) at both low and high frequencies, white-flowered plants were visited by pollinators at the same rate as plants with pigmented flowers; (2) at both frequencies, the a allele exhibited a greater total siring success (self and outcross pollen) than the A allele; (3) individuals of both genotypes contributed equally to the outcross pollen pool; and (4) aa plants may have a higher selfing rate than AA plants. Coupled with minimal inbreeding depression in I. purpurea, these observations indicate that the allele producing white flowers enjoys a transmission advantage that would tend to cause this allele to increase in frequency. This transmission advantage is very similar to that shown previously to be operating on the white-flowered allele at the W locus, although the specific causes of the advantage appear to differ between loci. The frequency difference between the two alleles is thus not likely to be due to differences in the effect of flower-colour variation on transmission. Rather, substantially greater deleterious pleiotropic effects associated with the white-flower a allele is likely to be the primary cause of the frequency difference.  相似文献   
68.
Plant genomes appear to exploit the process of gene duplication as a primary means of acquiring biochemical and developmental flexibility. Thus, for example, most of the enzymatic components of plant secondary metabolism are encoded by small families of genes that originated through duplication over evolutionary time. The dynamics of gene family evolution are well illustrated by the genes that encode chalcone synthase (CHS), the first committed step in flavonoid biosynthesis. We review pertinent facts about CHS evolution in flowering plants with special reference to the morning glory genus, Ipomoea. Our review shows that new CHS genes are recruited recurrently in flowering plant evolution. Rates of nucleotide substitution are frequently accelerated in new duplicate genes, and there is clear evidence for repeated shifts in enzymatic function among duplicate copies of CHS genes. In addition, we present new data on expression patterns of CHS genes as a function of tissue and developmental stage in the common morning glory (I. purpurea). These data show extensive differentiation in gene expression among duplicate copies of CHS genes. We also show that a single mutation which blocks anthocyanin biosynthesis in the floral limb is correlated with a loss of expression of one of the six duplicate CHS genes present in the morning glory genome. This suggests that different duplicate copies of CHS have acquired specialized functional roles over the course of evolution. We conclude that recurrent gene duplication and subsequent differentiation is a major adaptive strategy in plant genome evolution.  相似文献   
69.
The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Mn, DS-Co), phenylalanine ammonia-lyase (PAL), and chalcone synthase (CHS) was monitored at various light intensities (dark, 8.88 μmol m−2 s−1, 88.8 μmol m−2 s−1) using a strawberry cell suspension culture. DS-Mn, PAL, and CHS were found to increase significantly (p>0.05) under light intensitie of 88.8 μmol m−2 s−1 compared to those of 8.88 μmol m−2 s−1 and dark. The activity of DS-Mn, PAL, and CHS were maximum at 88.8 μmol m−2 s−1. Anthocyanin content reached a maximum after 48–60 h of culturing at 88.8 μmol m−2 s−1. DS-Co showed greater activity than DS-Mn during cell culturing, but showed no correlation with anthocyanin production and light intensity. The CHS gene expression was continuous at a light intensity of 88.8 μmol m−2 s−1. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
70.
Flower pigmentation patterns were scored in 185 senseChalcone synthase (Chs) transgenotes and 85 antisenseChs transgenotes; upon first flowering, 139 (75%) of sense transgenotes were found to be phenotypically altered, as were 70 (82%) of the antisense transgenotes. The observed patterns document the range of phenotypic variations that occur, as well as confirm and extend the finding that senseChs constructs produce several types of morphologybased based flower pigmentation patterns that antisenseChs constructs do not. Long-term monitoring for epigenetic variations in one population of 44 senseChs transgenotes showed that 43 (98%) were capable of producing a cosuppression phenotype. The primary determinant of sense-specific patterns of cosuppression ofChs was found to be the repetitiveness and organization pattern of the transgene, not position effects by, or readthrough from, flanking plant DNA sequences. The degree of cosuppression observed in progeny of transgenotes carrying multiple, dispersed copies as compared to that observed with a single copy of the transgene suggests that sense cosuppression ofChs is subject to a transgene dosage effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号