首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   29篇
  国内免费   15篇
  2023年   10篇
  2022年   9篇
  2021年   17篇
  2020年   29篇
  2019年   13篇
  2018年   16篇
  2017年   17篇
  2016年   8篇
  2015年   15篇
  2014年   8篇
  2013年   33篇
  2012年   19篇
  2011年   14篇
  2010年   6篇
  2009年   18篇
  2008年   17篇
  2007年   14篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   7篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   7篇
  1973年   4篇
排序方式: 共有442条查询结果,搜索用时 953 毫秒
51.
A new method has been developed for the isolation and rapid identification of anthocyanins from two floricultural crops based on the use of high-voltage paper electrophoresis with bisulphite buffer. Using this method, anthocyanin pigments were successfully purified as their negatively charged bisulphite-addition compounds from crude extracts of plant tissue. In conjunction with liquid chromatography-electrospray mass spectrometry, the method enabled the anthocyanins from the flowers of two Banksia species and the leaves of two Acacia species to be identified. The Banksia flowers contained both cyanidin and peonidin-based pigments, while the Acacia leaves contained cyanidin and delphinidin derivatives.  相似文献   
52.
The anthocyanin and proanthocyanidin (PA) biosynthetic pathways share common intermediates until leucocyanidin, which may be used by leucoanthocyanidin dioxygenase (LDOX) to produce anthocyanin, or the enzyme leucoanthocyanidin reductase (LAR) to produce catechin, a precursor of PA. The Arabidopsis mutant tannin deficient seed 4 (tds4-1) has a reduced PA level and altered pattern PA accumulation. We identified the TDS4 gene as LDOX by complementation of the tds4-1 mutation either with a cosmid encoding LDOX or a 35S:LDOX construct. Independent Arabidopsis lines with a T-DNA insertion in the LDOX gene had a similar phenotype, and one was allelic to tds4-1. The seed phenotype of ban tds4 double mutants showed that LDOX precedes BANYULS (BAN) in the PA pathway, confirming recent biochemical characterisation of BAN as an anthocyanidin reductase. Double mutant analysis was also used to order the other TDS genes. Analysis of the PA intermediates in tds4-1 revealed three dimethylaminocinnamaldehyde (DMACA) reacting compounds that accumulated in extracts from developing seeds. Analysis of Arabidopsis PA and its precursors indicates that Arabidopsis, unlike many other plants, exclusively uses the epicatechin and not the catechin pathway to PA. Transmission electron microscopy (TEM) showed that the pattern observed when seeds of tds4 were stained with DMACA was a result of the accumulation of PA intermediates in the cytoplasm of endothelial cells. Fluorescent marker dyes were used to show that tds4 endothelial cells had multiple small vacuoles, instead of a large central vacuole as observed in the wild types (WT). These results show that in addition to its established role in the formation of anthocyanin, LDOX is also part of the PA biosynthesis pathway.  相似文献   
53.
The leaves of woody plants at Harvard Forest in Central Massachusetts, USA, changed color during senescence; 70% (62/89) of the woody species examined anatomically contained anthocyanins during senescence. Anthocyanins were not present in summer green leaves, and appeared primarily in the vacuoles of palisade parenchyma cells. Yellow coloration was a result of the unmasking of xanthophyll pigments in senescing chloroplasts. In nine red-senescing species, anthocyanins were not detectable in mature leaves, and were synthesized de novo in senescence, with less than 20µg cm–2 of chlorophyll remaining. Xanthophyll concentrations declined in relation to chlorophyll to the same extent in both yellow- and red-leaved taxa. Declines in the maximum photosystemII quantum yield of leaves collected prior to dawn were only slightly less in the red-senescing species, indicating no long-term protective activity. Red-leaved species had significantly greater mass/area and lower chlorophylla/b ratios during senescence. Nitrogen tissue concentrations in mature and senescent leaves negatively correlated to anthocyanin concentrations in senescent leaves, weak evidence for more efficient nitrogen resorption in anthocyanic species. Shading retarded both chlorophyll loss and anthocyanin production in Cornus alternifolia, Acer rubrum, Acer saccharum, Quercus rubra and Viburnum alnifolium. It promoted chlorophyll loss in yellow-senescing Fagus grandifolia. A reduced red:far-red ratio did not affect this process. Anthocyanins did not increase leaf temperatures in Q.rubra and Vaccinium corymbosum on cold and sunny days. The timing of leaf-fall was remarkably constant from year to year, and the order of senescence of individual species was consistent.  相似文献   
54.
The influence of Putrescine (Put) on the growth and elicitation of anthocyanin in callus cultures of Daucus carota var. Nantes scarlet was investigated through the use of α-DL-difluoromethylarginine (DFMA), the polyamine (PA) biosynthetic inhibitor. It was observed that the addition of Put (0.05 mM) resulted in enhancement of growth and anthocyanin content. The anthocyanin content was found to be enhanced by 1.68 fold on the 21st day as compared to the untreated controls. The PA inhibitor was found to result in lowering of the growth and the anthocyanin accumulation, which could be partially restored by the addition of Put in combination with this inhibitor. The levels of Ca2+ ATPase were also found to be elevated in treatment with Put suggesting the involvement of calcium in the elicitation of anthocyanin. The endogenous titres of PAs and the ethylene production under these treatments were also studied. The treatment with DFMA resulted in lower levels of endogenous PAs and higher levels of ethylene. Lowering of ethylene by putrescine treatment shows that PA treatment also inhibited ethylene formation, which would also imply that endogenous ethylene does not influence anthocyanin production in carrot callus cultures.  相似文献   
55.
56.
An anthocyanin-producing suspension culture of Daucus carota (L.) cv. Flakkese was used as model system to study secondary metabolite production in cell culture at the individual cell level. An approach was set up in which growth and production of anthocyanins were investigated using a combination of biochemical analysis, image (colour) analysis and in vivo imaging. This novel approach was used to segment the culture in different subpopulations and dissect the productive process in the cell culture grown under two different conditions, known to differ mainly for oxygen supply and mixing intensity (volume of 50 ml or 20 ml in 250 ml flasks). The 20 ml batch cultures gave a higher content and yield of anthocyanins, which depended on a complex balance between events that positively or negatively affected anthocyanin production. A model is proposed in which the different ability of cells to respond to environmental stimuli and stress depends on the different amount of anthocyanins accumulated within cells.  相似文献   
57.
58.
Yoshida K  Kitahara S  Ito D  Kondo T 《Phytochemistry》2006,67(10):992-998
The Himalayan blue poppy, Meconopsis grandis, has sky blue-colored petals, although the anthocyanidin nucleus of the petal pigment is cyanidin. The blue color development in this blue poppy involving ferric ions was therefore studied. We analyzed the vacuolar pH, and the organic and inorganic components of the colored cells. A direct measurement by a proton-selective microelectrode revealed that the vacuolar pH value was 4.8. The concentrations of the total anthocyanins in the colored cells were around 5mM, and ca. three times more concentrated flavonols were detected. Fe was detected by atomic analysis of the colored cells, and the ratio of Fe to anthocyanins was ca. 0.8 eq. By mixing the anthocyanin, flavonol and metal ion components in a buffered aq. solution at pH 5.0, we were able to reproduce the same blue color; the visible absorption spectrum and CD were identical to those in the petals, with Fe(3+), Mg(2+) and flavonol being essential for the blue color. The blue pigment in Meconopsis should be a new type of metal complex pigment that is different from a stoichiometric supramolecular pigment such as commelinin or protocyanin.  相似文献   
59.
Mori M  Kondo T  Toki K  Yoshida K 《Phytochemistry》2006,67(6):622-629
The dicaffeoyl anthocyanin, phacelianin, was isolated from blue petals of Phacelia campanularia. Its structure was determined to be 3-O-(6-O-(4'-O-(6-O-(4'-O-beta-d-glucopyranosyl-(E)-caffeoyl)-beta-d-glucopyranosyl)-(E)-caffeoyl)-beta-d-glucopyranosyl)-5-O-(6-O-malonyl-beta-d-glucopyranosyl)delphinidin. The CD of the blue petals of the phacelia showed a strong negative Cotton effect and that of the suspension of the colored protoplasts was the same, indicating that the chromophores of phacelianin may stack intermolecularly in an anti-clockwise stacking manner in the blue-colored vacuoles. In a weakly acidic aqueous solution, phacelianin displayed the same blue color and negative Cotton effect in CD as those of the petals. However, blue-black colored precipitates gradually formed without metal ions. A very small amount of Al(3+) or Fe(3+) may be required to stabilize the blue solution. Phacelianin may take both an inter- and intramolecular stacking form and shows the blue petal color by molecular association and the co-existence of a small amount of metal ions. We also isolated a major anthocyanin from the blue petals of Evolvulus pilosus and revised the structure identical to phacelianin.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号