首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   12篇
  2023年   2篇
  2022年   5篇
  2021年   12篇
  2020年   7篇
  2019年   2篇
  2018年   8篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   10篇
  2012年   13篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
61.
Recent observations suggest that permafrost thaw may create two completely different soil environments: aerobic in relatively well‐drained uplands and anaerobic in poorly drained wetlands. The soil oxygen availability will dictate the rate of permafrost carbon release as carbon dioxide (CO2) and as methane (CH4), and the overall effects of these emitted greenhouse gases on climate. The objective of this study was to quantify CO2 and CH4 release over a 500‐day period from permafrost soil under aerobic and anaerobic conditions in the laboratory and to compare the potential effects of these emissions on future climate by estimating their relative climate forcing. We used permafrost soils collected from Alaska and Siberia with varying organic matter characteristics and simultaneously incubated them under aerobic and anaerobic conditions to determine rates of CO2 and CH4 production. Over 500 days of soil incubation at 15 °C, we observed that carbon released under aerobic conditions was 3.9–10.0 times greater than anaerobic conditions. When scaled by greenhouse warming potential to account for differences between CO2 and CH4, relative climate forcing ranged between 1.5 and 7.1. Carbon release in organic soils was nearly 20 times greater than mineral soils on a per gram soil basis, but when compared on a per gram carbon basis, deep permafrost mineral soils showed carbon release rates similar to organic soils for some soil types. This suggests that permafrost carbon may be very labile, but that there are significant differences across soil types depending on the processes that controlled initial permafrost carbon accumulation within a particular landscape. Overall, our study showed that, independent of soil type, permafrost carbon in a relatively aerobic upland ecosystems may have a greater effect on climate when compared with a similar amount of permafrost carbon thawing in an anaerobic environment, despite the release of CH4 that occurs in anaerobic conditions.  相似文献   
62.
The topical delivery of local anaesthetics has always been a difficult task due to the limited percutaneous absorption of local anaesthetic drugs across the various barriers of the skin. In this pursuit, a thermoresponsive mixed micellar nanogel (MMNG) system of lidocaine and prilocaine has been attempted in the current piece of work. The system relies on the ability to alter its phase state (sol-to-gel) for feasibility of the topical application in response to change in temperature. The composition of MMNG entails majorly of Pluronic® F127 and Tween 80 in a fixed combination so as to provide the desired thermoreversibility for the skin application. The gels were optimized with respect to phase transition temperature (T sol/gel), turbidity and viscosity. The optimized systems were then characterized for particle size, spreadability, syringeability, bioadhesive strength, ex vivo skin permeation, retention and dermatokinetic studies. The skin compatibility revealed that no histological changes were observed for optimized formulation, while the conventional system showed changes in the skin-tissues. Further, the enhanced intensity of anaesthetic effect was noted in an in vivo rabbit model and tail flick model in mice. The overall results suggest that the prepared MMNG system possesses the potential in providing an efficacious, safe and acceptable alternative therapeutic system for topical anaesthesia.  相似文献   
63.
64.
Many recombinant eukaryotic proteins tend to form insoluble aggregates called inclusion bodies, especially when expressed in Escherichia coli. We report the first application of the technique of three-phase partitioning (TPP) to obtain correctly refolded active proteins from solubilized inclusion bodies. TPP was used for refolding 12 different proteins overexpressed in E. coli. In each case, the protein refolded by TPP gave either higher refolding yield than the earlier reported method or succeeded where earlier efforts have failed. TPP-refolded proteins were characterized and compared to conventionally purified proteins in terms of their spectral characteristics and/or biological activity. The methodology is scaleable and parallelizable and does not require subsequent concentration steps. This approach may serve as a useful complement to existing refolding strategies of diverse proteins from inclusion bodies.  相似文献   
65.
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-alpha/beta. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-alpha transport receptor and directly binds to importin-alpha. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus.  相似文献   
66.
One new pentaoxygenated free xanthone and a new pentaoxygenated xanthone-O-glucoside have been isolated and characterized from the flowering top of a fresh batch of Canscora decussata. The structure previously assigned to ‘xanthone 9’ has now been confirmed by application of NOE. The biochemical significance of xanthone formation and glucosidation in plants is appraised.  相似文献   
67.

Salinity has been observed to be a global problem that impede the physiological characteristics of plants. Salicylic acid (SA) as a phytohormone play multifaceted role in plants in terms of development as well as stress management. The current study was conducted to evaluate the effect of salinity and salicylic acid on the performance of wheat and barley plants under field experimentation followed by on-farm study to validate the results. This research was firstly conducted in a 4-year research barley field (2012–2013 and 2013–2014) and wheat (2014–2015 and 2015–2016) and subsequently in an on-farm research in four places (2017–2018). Results depicted that salinity decreased plant yield components and altered ion concentrations (Na+/K+) causing reduced grain and biological yield. However, SA foliar application induced yield components, especially grain number of plants in both years in non-saline and saline conditions. Exogenously SA application not only led to higher grain yield of barley and wheat but also significantly improved their salt tolerance. Our findings revealed that optimum SA concentrations for achieving highest barley yield were 0.85 and 0.78 mM under saline and non-saline conditions, respectively, while on-farm scale studies observed that foliar application of SA increased grain and biological yield of wheat in Ardakan, Ashkzar (saline soil and water) and Mehrabad (non-saline field) regions. There was no significant effect in Tijerd, a completely non-saline field. The grain yields were higher in SA-treated Ardakan, Ashkzar, and Mehrabad plants in field by 19, 16, and 15%, respectively. Based on present detailed studies, it was concluded that SA improved salinity tolerance and increased crop yield. So, optimum concentration (1.0–1.5 mM) with proper time application (double ridges), SA increased wheat and barley yields up to 20%. Therefore, SA priming could be used as a potent strategy to cope up salinity stress from plants.

  相似文献   
68.
Low cost treatment of polluted wastewater has become a serious challenge in most of the urban areas of developing countries. The present study was undertaken to investigate the potential of Canna lily towards removal of carbon, nitrogen, and phosphorus from wastewater under sub-tropical conditions. A constructed wetland (CW) cell supporting vegetative layer of Canna lily was used to treat wastewater having high strength of CNP. Removal of biological oxygen demand (BOD3) and chemical oxygen demand (COD) varied between 69.8–96.4% and 63.6–99.1%, respectively. C. lily could efficiently remove carbon from a difficult to degrade wastewater at COD:BOD ratio of 24.4. Simultaneous reduction in TKN and nitrate pointed to good nitrification rates, and efficient plant assimilation as the dominant nutrient removal mechanism in the present study. Suitable Indian agro-climatic conditions favored plant growth and no evident stress over the Canna plant was observed. High removal rate of 809.8 mg/m2-day for TKN, 15.0 mg/m2-day for nitrate, and 164.2 mg/m2-day for phosphate suggests for a possible use of Canna-based CW for wastewater treatment for small, rural, and remote Indian communities.  相似文献   
69.
The oxygen transport capacity of nonhypertensive polyethylene glycol (PEG)-conjugated hemoglobin solutions were investigated in the hamster chamber window model. Microvascular measurements were made to determine oxygen delivery in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Two isovolemic hemodilution steps were performed with a 6% Dextran 70 (70-kDa molecular mass) plasma expander until Hct was 35% of control. Isovolemic blood volume exchange was continued using two surface-modified PEGylated hemoglobins (P5K2, P(50) = 8.6, and P10K2, P(50) = 8.3; P(50) is the hemoglobin Po(2) corresponding to its 50% oxygen saturation) until Hct was 11%. P5K2 and P10K2 are PEG-conjugated hemoglobins that maintain most of the hemoglobin allosteric properties and have a cooperativity index of n = 2.2. The effects of these molecular solutions were compared with those obtained in a previous study using MP4, a PEG-modified hemoglobin whose P(50) was 5.4 and cooperativity was 1.2 (Tsai et al., Am J Physiol Heart Circ Physiol 285: H1411-H1419, 2003). Tissue oxygen levels were higher after P5K2 (7.0 +/- 2.5 mmHg) and P10K2 (6.3 +/- 2.3 mmHg) versus MP4 (1.7 +/- 0.5 mmHg) or the nonoxygen carrier Dextran 70 (1.3 +/- 1.2 mmHg). Microvascular oxygen delivery was higher after P5K2 and P10K2 (2.22 and 2.34 ml O(2)/dl blood) compared with MP4 (1.41 ml O(2)/dl blood) or Dextran 70 (0.90 ml O(2)/dl blood); however, all these values were lower than control (7.42 ml O(2)/dl blood). The total hemoglobin in blood was similar in all cases; therefore, the improvement in tissue Po(2) and oxygen delivery appears to be due to the increased cooperativity of the new molecules.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号