首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   67篇
  国内免费   1篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   12篇
  2016年   10篇
  2015年   20篇
  2014年   14篇
  2013年   21篇
  2012年   31篇
  2011年   30篇
  2010年   30篇
  2009年   16篇
  2008年   16篇
  2007年   26篇
  2006年   25篇
  2005年   23篇
  2004年   24篇
  2003年   23篇
  2002年   19篇
  2001年   19篇
  2000年   17篇
  1999年   18篇
  1998年   6篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   3篇
  1992年   10篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1983年   6篇
  1982年   10篇
  1980年   9篇
  1979年   10篇
  1978年   5篇
  1977年   3篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1972年   4篇
  1971年   7篇
  1970年   7篇
排序方式: 共有625条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The ZC3H14 gene, which encodes a ubiquitously expressed, evolutionarily conserved, nuclear, zinc finger polyadenosine RNA-binding protein, was recently linked to autosomal recessive, nonsyndromic intellectual disability. Although studies have been carried out to examine the function of putative orthologs of ZC3H14 in Saccharomyces cerevisiae, where the protein is termed Nab2, and Drosophila, where the protein has been designated dNab2, little is known about the function of mammalian ZC3H14. Work from both budding yeast and flies implicates Nab2/dNab2 in poly(A) tail length control, while a role in poly(A) RNA export from the nucleus has been reported only for budding yeast. Here we provide the first functional characterization of ZC3H14. Analysis of ZC3H14 function in a neuronal cell line as well as in vivo complementation studies in a Drosophila model identify a role for ZC3H14 in proper control of poly(A) tail length in neuronal cells. Furthermore, we show here that human ZC3H14 can functionally substitute for dNab2 in fly neurons and can rescue defects in development and locomotion that are present in dNab2 null flies. These rescue experiments provide evidence that this zinc finger-containing class of nuclear polyadenosine RNA-binding proteins plays an evolutionarily conserved role in controlling the length of the poly(A) tail in neurons.  相似文献   
6.
7.
A 36-residue peptide containing the bond cleaved by animal collagenases was isolated from a digest of chick skin collagen α1-CB7 by Staphylococcus V8 protease. This cleavage site peptide, in contrast to the 36-residue α1-CB2, showed no tendency to renature to the triple helical form, as monitored by molecular sieve chromatography and the determination of circular dichroism spectra. These results provide a direct demonstration that the conformation of the α1[I] chain immediately around the collagenase cleavage site in the native molecule must be of a lower degree of helicity than other portions of the chain. This is considered to be an important factor in the collagenase specificity, in providing access to the sensitive bonds, but enzyme binding sites, probably located in the adjacent region(s) of maximum helicity, are also considered necessary to produce the maximum reaction rate.  相似文献   
8.
A novel pyrrolobenzodiazepine dimer payload, SG3227, was rationally designed based on the naturally occurring antitumour compound sibiromycin. SG3227 was synthesized from a dimeric core in an efficient fashion. An unexpected room temperature Diels-Alder reaction occurred during the final step of the synthesis and was circumvented by use of an iodoacetamide conjugation moiety in place of a maleimide. The payload was successfully conjugated to trastuzumab and the resulting ADC exhibited potent activity against a HER2-expressing human cancer cell line in vitro.  相似文献   
9.
A variety of cellular pathways are regulated by protein modifications with ubiquitin-family proteins. SUMO, the Small Ubiquitin-like MOdifier, is covalently attached to lysine on target proteins via a cascade reaction catalyzed by E1, E2, and E3 enzymes. A major barrier to understanding the diverse regulatory roles of SUMO has been a lack of suitable methods to identify protein sumoylation sites. Here we developed a mass-spectrometry (MS) based approach combining chemical and enzymatic modifications to identify sumoylation sites. We applied this method to analyze the auto-sumoylation of the E1 enzyme in vitro and compared it to the GG-remnant method using Smt3-I96R as a substrate. We further examined the effect of smt3-I96R mutation in vivo and performed a proteome-wide analysis of protein sumoylation sites in Saccharomyces cerevisiae. To validate these findings, we confirmed several sumoylation sites of Aos1 and Uba2 in vivo. Together, these results demonstrate that our chemical and enzymatic method for identifying protein sumoylation sites provides a useful tool and that a combination of methods allows a detailed analysis of protein sumoylation sites.  相似文献   
10.
The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC) transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号