首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  国内免费   41篇
  2023年   1篇
  2021年   1篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   10篇
  2008年   7篇
  2007年   10篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
51.
不同的中和剂对L(+)-乳酸发酵的影响   总被引:2,自引:0,他引:2  
分别利用CaCO3、6 mol/L氨水和6 mol/L NaOH溶液调控乳酸发酵过程的pH,得到的乳酸浓度为169.1g/L、187.9g/L和170.1g/L(以发酵液的初始体积计算),分别是无pH调控发酵过程的4.9倍、5.4倍和4.9倍;得到的OD620分别为19.3、21.6和16.4,分别是无pH调控(OD620为8.5)的2.3倍、2.5倍和1.9倍.相对于氨水和NaOH来说,CaCO3粉末是一种缓慢型的酸中和剂,pH调节能力有限,只能将pH维持在4.9~5.2.但CaCO3可以将乳酸以生成乳酸钙的形式沉淀下来,给下游乳酸的分离提取带来一定的方便.因此对于传统的分批式发酵,CaCO3仍不失为一种较好的选择.氨水和NaOH溶液都可以很好地将发酵液的pH调控在6.0,其中氨水是一种最理想的酸中和剂,既有利于乳酸的生物合成又能促进乳酸菌的生长.  相似文献   
52.
研究了温度对巴斯德毕赤酵母表达瑞替普酶(reteplase,rPA)的影响。结果发现,在BMMY摇瓶培养条件下,诱导温度在20℃、25℃,rPA表达量较高,分别是30℃诱导条件下(18.2mg/L)的1.4倍和1.34倍。在高密度发酵过程中,降低诱导温度(20℃、25℃),rPA的表达量在诱导表达84h时达到最高,分别为207.9mg/L和199.5mg/L,比30℃诱导条件下分别提高了35%和30%。通过对细胞活性、蛋白酶和AOX酶活性分析发现,降低温度不仅提高了发酵过程中酵母活细胞率,降低了蛋白酶的活性,减少了rPA的降解,而且提高了AOX酶活,增强了rPA的表达。  相似文献   
53.
目的:对重组大肠杆菌组成型表达粪产碱杆菌青霉素G酰化酶(AfPGA)进行了发酵条件研究。方法:在摇瓶和5L发酵罐中研究了(NH4)2SO4和葡萄糖浓度对质粒的分离稳定性及青霉素G酰化酶表达的影响。结果:该工程菌质粒具有分离不稳定性,培养基中无(NH4)2SO4时发酵过程中pH和糊精水解生成葡萄糖的浓度变化较小,细胞前期(0h-12h)的生长速率降低,质粒分离稳定性和青霉素G酰化酶的表达水平提高。发酵过程中维持低葡萄糖水平可以限制细胞的生长速率,提高质粒稳定性和促进青霉素G酰化酶的合成。采用混合碳源发酵,发酵培养基含糊精2g/L,12h后以1g/L.h恒速流加葡萄糖至35h,控制流加过程葡萄糖浓度0.1g/L左右,平均比生长速率为0.06h-1,发酵结束时质粒稳定性为86%,青霉素G酰化酶的表达水平达23 000U/L。结论:重组大肠杆菌组成型表达青霉素G酰化酶的研究对工业生产有一定指导意义。  相似文献   
54.
甲醇营养型毕赤酵母生产S-腺苷甲硫氨酸(SAM)是通过其表达的SAM合成酶催化L-甲硫氨酸(L-Met)和ATP反应而合成的。本文采用全合成培养基,在摇瓶上进行了培养条件的优化,确定了接种量、pH、PTM1、PO43-等初步条件。并根据SAM生物合成的特征,重点对其碳、氮源的影响作了进一步的分析优化。结果表明:当CaSO40.465g/L,K2SO49.10g/L,MgSO4.7H2O 7.45g/L,PO43-0.5mol/L情况下,生长阶段,甘油4%、硫酸铵4.00g/L为最佳;诱导表达阶段,L-Met1.0g/L,甘油与甲醇比例为0.5、硫酸铵8.00g/L为最佳。优化后,SAM产量诱导4d后达1.48g/L,诱导5d后可达1.70g/L(131mg/g干细胞),L-Met的转化率可达40.65%,既利于工艺放大又便于产品的分离纯化。  相似文献   
55.
重组巴氏毕赤酵母高密度发酵表达rHSA   总被引:11,自引:0,他引:11  
对基因工程菌Pichiapastoris的摇瓶发酵条件进行了试验 ,并根据摇瓶发酵的优化结果进行了补料分批高密度发酵。在摇瓶发酵时 ,甲醇诱导基因工程菌P .pastoris表达重组人血清白蛋白的发酵周期为 96h ;甲醇的最佳诱导浓度为 1 0g L ;发酵pH范围为 5 72~ 6 5 9;在摇瓶培养时 ,随着接种量的增加 ,虽然目的蛋白表达量缓慢增加 ,但单位细胞光密度的蛋白产率却明显下降 ,符合y =1 2 941x- 0 50 59方程 (线性相关系数r=0 9789) ,其限制性因子很可能为溶氧。在分批发酵 ,接种量为 1 0 %且种子细胞光密度 (OD60 0 )为 2 0左右时 ,细胞生长的延迟期为 2 1 1h左右 ,细胞生长光密度与培养时间的关系模型为 :y =0 7841e0 .2 3 19t(线性相关系数r=0 .993 6 ) ;在补料发酵时细胞干重浓度可达到 1 1 5g L— 1 6 0g L ,在 1 2 0h重组人血清白蛋白表达量最大达到 3 6g L。  相似文献   
56.
头孢菌素C产生菌的诱变育种及培养基优化   总被引:1,自引:0,他引:1  
通过对顶头孢霉(Cephalosporium acremonium)FC-01进行诱变选育及特定种子培养基的优化,提高了头孢菌素C的发酵产量。分别采用紫外-氯化锂和钴-60(60Co)γ射线对FC-01进行诱变选育,筛选到高产菌株FC-1-4和FC-4-2,产量较出发菌株分别提高了26%和54.5%。运用Plackett-Burman设计方法和响应面法对种子培养基进行优化,头孢菌素C发酵效价较对照分别提高了34.7%和13.2%,优化后的种子培养基主要成分为玉米浆3.70%、葡萄糖2.62%和硫酸镁0.15%,得到的菌株及相应的种子培养条件已成功应用在160M3工业发酵罐生产中,具有重要的工业生产能力。  相似文献   
57.
黑曲霉具备优异的外源蛋白表达和分泌能力,从而被广泛应用于工业酶制剂的生产。通过研究黑曲霉突变株和野生株在相同培养条件下生理参数和代谢流的差异,确定了黑曲霉合成糖化酶过程中的限制性因素。宏观动力学分析发现,较之野生株,突变株具有较高的最大比生长速率,并且副产物得率降低了90%,底物利用率提高了近30%,表明突变株与野生株在碳源分配和产物转化率上具有明显的差异。利用流平衡分析(FBA)计算胞内代谢通量分布,发现还原力和核糖的供应水平是限制菌体合成的主要因素,而前体氨基酸是合成糖化酶最主要的限制性因素。这些研究结果为后续发酵工艺优化和菌株基因改造提供了有益的思路。  相似文献   
58.
DNA改组技术发展与应用   总被引:5,自引:0,他引:5  
DNA改组技术是目前蛋白质、酶和单克隆抗体等体外定向进化的高效方法。综述了DNA改组技术的发展及其应用 ,在提高酶活性、蛋白质产量和改善蛋白质 (酶 )的性能等方面具有广泛的应用前景。  相似文献   
59.
pH值对绿色木霉(Trichoderma viride)产纤维素酶的影响   总被引:4,自引:0,他引:4  
采用微晶纤维素为唯一诱导性碳源,对绿色木霉(Trichoderma viride)在摇瓶发酵过程中控制与不控制pH产纤维素酶进行比较.控制pH时胞外蛋白浓度为0.72 mg/mL比不控制pH时提高43%;FPA、EG、GB和CBH酶活为15.0U/mL,120.0U/mL,1.75U/mL,0.85U/mL分别是不控制pH时的2.1、2.3、11.7和1.7倍.在不同pH下测定纤维素酶液各酶活,表明pH值显著影响纤维素酶各单酶酶活.在pH2.7时,β-葡萄糖苷酶酶活仅为pH4.8时酶活的4%;pH回调试验结果表明β-葡萄糖苷酶对pH敏感,并在催化功能上发生不可逆变化.对纤维素酶液添加分离得到的各单酶,当添加β-葡萄糖苷酶时最多可以提高FPA酶活20%.因此β-葡萄糖苷酶是影响综合酶活的关键酶.通过拉曼光谱检测出β-葡萄糖苷酶在pH5.0有活性状态下,酶蛋白主链结构主要为a-螺旋和无规则卷曲;在pH2.0没有活性状态下,酶蛋白主链结构的无规则卷曲发生较大变化,a-螺旋也受到一定影响.这说明pH对β-葡萄糖苷酶构象的改变是造成其活性变化的主要原因.  相似文献   
60.
pH对毕赤酵母表达重组人复合α干扰素的降解影响   总被引:1,自引:1,他引:0  
使用Pichiapastoris表达重组人复合α干扰素(cIFN)会发生降解、聚合等不均一表达的现象.在5 L发酵罐中考察了不同诱导pH对cIFN表达产生降解的影响,结果发现在适合酵母生长的pH 3.0~7.0范围内,当诱导pH为4.0~5.0时,cIFN不均一表达现象最少,生物活性达到2.5×108 IU/mL.通过测定发酵液中总蛋白酶活和细胞活性寻找了cIFN降解出现的原因:发现低诱导pH下细胞死亡率升高释放更多酶系,高诱导pH下蛋白酶活性明显增大,两者都使蛋白酶作用加强,加剧cIFN的降解;特别是诱导pH为7.0时,适宜的pH使蛋白酶酶活陡升,将cIFN完全降解.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号