首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   506篇
  免费   26篇
  国内免费   36篇
  2024年   1篇
  2023年   7篇
  2022年   7篇
  2021年   9篇
  2020年   20篇
  2019年   14篇
  2018年   10篇
  2017年   11篇
  2016年   12篇
  2015年   11篇
  2014年   19篇
  2013年   46篇
  2012年   19篇
  2011年   17篇
  2010年   18篇
  2009年   20篇
  2008年   16篇
  2007年   20篇
  2006年   15篇
  2005年   19篇
  2004年   14篇
  2003年   24篇
  2002年   28篇
  2001年   18篇
  2000年   20篇
  1999年   9篇
  1998年   11篇
  1997年   11篇
  1996年   7篇
  1995年   9篇
  1994年   17篇
  1993年   9篇
  1992年   12篇
  1991年   6篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1985年   7篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   6篇
  1977年   1篇
  1973年   1篇
排序方式: 共有568条查询结果,搜索用时 218 毫秒
51.
Brain development shows high plasticity in response to environmental heterogeneity. However, it is unknown how environmental variation during development may affect brain architecture across life history switch points in species with complex life cycles. Previously, we showed that predation and competition affect brain development in common frog (Rana temporaria) tadpoles. Here, we studied whether larval environment had carry-over effects in brains of metamorphs. Tadpoles grown at high density had large optic tecta at metamorphosis, whereas tadpoles grown under predation risk had small diencephala. We found that larval density had a carry-over effect on froglet optic tectum size, whereas the effect of larval predation risk had vanished by metamorphosis. We discuss the possibility that the observed changes may be adaptive, reflecting the needs of an organism in given environmental and developmental contexts.  相似文献   
52.
Abstract. Plasticity in hatching can balance risks of benthic and pelagic development and thereby affect the extent of larval dispersal. Veligers of the nudibranch Phestilla sibogae hatched from their individual capsules if the encapsulated embryos were scattered from a torn gelatinous egg ribbon. Hatching occurred as early as day 4 at 23°–25°C. The early hatchlings lacked a propodium, swam, and were not yet competent to settle and metamorphose. Hatching may be induced by predation: crabs consumed egg ribbons, and a portunid crab, caught in the act of tearing an egg ribbon, scattered encapsulated embryos. Undisturbed egg masses hatched as late as 9–11 d at 23°–25°C, or as early as 8 d in a trial at 26°C. Late hatchlings had a well-developed propodium, and 20–100% metamorphosed within a day of exposure to the inducer from the nudibranch's coral prey. A few metamorphosed nudibranchs were found within hatching egg masses. Thus, the veligers can hatch so late that many are competent to metamorphose or so early that the obligate planktonic period can last 4 or more days. An attack by a predator means the benthic habitat is dangerous for the embryos, and swimming is presumably the safer option. In the absence of disturbance, the veligers hatch when ready or nearly ready to settle.  相似文献   
53.
The effect of the excretory-secretory products of some fouling animals on the settling and metamorphosis of larvae of the solitary ascidian Styela rustica was assessed. The substances secreted by the sponge Halichondria panicea stimulated settling of larvae, but concurrently blocked their metamorphosis. The excretory-secretory products of the mussel Mytilus edulis and the ascidian Molgula citrine did not affect settling of the S. rustica larvae but impeded their subsequent development. Water conditioned by the bivalve Hiatella arctica, stimulated settling and, apparently, metamorphosis of the larvae of S. rustica. The chemical substances produced by adult individuals of S. rustica facilitated settling of conspecific larvae but slightly delayed their metamorphosis.  相似文献   
54.
55.
Ecosystems are often indirectly connected through consumers with complex life cycles (CLC), in which different life stages inhabit different ecosystems. Using a structured consumer resource model that accounts for the independent effects of two resources on consumer growth and reproductive rates, we show that such indirect connections between ecosystems can result in alternative stable states characterized by adult-dominated and juvenile-dominated consumer populations. As a consequence, gradual changes in ecosystem productivity or mortality rates of the consumer can lead to dramatic and abrupt regime shifts across different ecosystems, hysteresis and counterintuitive changes in the consumer abundances. Whether these counter intuitive or abrupt responses occur depend on the relative productivity of both habitats and which consumer life-stage inhabits the manipulated ecosystem. These results demonstrate the strong yet complex interactions between ecosystems coupled through consumers with CLC and the need to think across ecosystems to reliably predict the consequences of natural or anthropogenic changes.  相似文献   
56.
The metamorphosis of the cinctoblastula of Homoscleromorpha is studied in five species belonging to three genera. The different steps of metamorphosis are similar in all species. The metamorphosis occurs by the invagination and involution of either the anterior epithelium or the posterior epithelium of the larva. During metamorphosis, morphogenetic polymorphism was observed, which has an individual character and does not depend on either external or species specific factors. In the rhagon, the development of the aquiferous system occurs only by epithelial morphogenesis and subsequent differentiation of cells. Mesohylar cells derive from flagellated cells after ingression. The formation of pinacoderm and choanoderm occurs by the differentiation of the larval flagellated epithelium. This is possibly due to the conservation of cell junctions in the external surface of the larval flagellated cells and of the basement membrane in their internal surface. The main difference in homoscleromorph metamorphosis compared with Demospongiae is the persistence of the flagellated epithelium throughout this process and even in the adult since exo- and endopinacoderm remain flagellated. The antero-posterior axis of the larva corresponds to the baso-apical axis of the adult in Homoscleromorpha.  相似文献   
57.
58.
The paired antennal lobes are the first integration centers for odor information in the insect brain. In the sphinx moth Manduca sexta, like in other holometabolous insects, they are formed during metamorphosis. To further understand mechanisms involved in the formation of this particularly well investigated brain area, we performed a direct peptide profiling of a well defined cell group (the lateral cell group) of the antennal lobe throughout development by MALDI-TOF mass spectrometry. Although the majority of the about 100 obtained ion signals represent still unknown substances, this first peptidomic characterization of this cell group indicated the occurrence of 12 structurally known neuropeptides. Among these peptides are helicostatin 1, cydiastatins 2, 3, and 4, M. sexta-allatotropin (Mas-AT), M. sexta-FLRFamide (Mas-FLRFamide) I, II, and III, nonblocked Mas-FLRFamide I, and M. sexta-myoinhibitory peptides (Mas-MIPs) III, V, and VI. The identity of two of the allatostatins (cydiastatins 3 and 4) and Mas-AT were confirmed by tandem mass spectrometry (MALDI-TOF/TOF). During development of the antennal lobe, number and frequency of ion signals including those representing known peptides generally increased at the onset of glomeruli formation at pupal Stage P7/8, with cydiastatin 2, helicostatin 1, and Mas-MIP V being the exceptions. Cydiastatin 2 showed transient occurrence mainly during the period of glomerulus formation, helicostatin 1 was restricted to late pupae and adults, while Mas-MIP V occurred exclusively in adult antennal lobes. The power of the applied direct mass spectrometric profiling lies in the possibility of chemically identifying neuropeptides of a given cell population in a fast and reliable manner, at any developmental stage in single specimens. The identification of neuropeptides in the antennal lobes now allows to specifically address the function of these signaling molecules during the formation of the antennal lobe network.  相似文献   
59.
60.
It has been hypothesized by Barker that starfish brachiolaria larvae initiate metamorphosis by sensing of metamorphic inducing factor(s) with neural cells within the adhesive papillae on their brachiolar arms. We present evidence supporting Barker's hypothesis using brachiolaria larvae of the two species, Asterina pectinifera and Asterias amurensis. Brachiolaria larvae of these two species underwent metamorphosis in response to pebbles from aquaria in which adults were kept. Time-lapse analysis of A. pectinifera indicated that the pebbles were explored with adhesive papillae prior to establishment of a stable attachment for metamorphosis. Microsurgical dissections, which removed adhesive papillae, resulted in failure of the brachiolaria larvae to respond to the pebbles, but other organs such as the lateral ganglia, the oral ganglion, the adhesive disk or the adult rudiment were not required. Immunohistochemical analysis with a neuron-specific monoclonal antibody and transmission electron microscopy revealed that the adhesive papillae contained neural cells that project their processes towards the external surface of the adhesive papillae and they therefore qualify as sensory neural cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号