首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   45篇
  国内免费   50篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   25篇
  2019年   13篇
  2018年   23篇
  2017年   17篇
  2016年   17篇
  2015年   26篇
  2014年   24篇
  2013年   57篇
  2012年   13篇
  2011年   23篇
  2010年   19篇
  2009年   25篇
  2008年   33篇
  2007年   27篇
  2006年   29篇
  2005年   37篇
  2004年   40篇
  2003年   31篇
  2002年   18篇
  2001年   24篇
  2000年   24篇
  1999年   8篇
  1998年   17篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   13篇
  1993年   27篇
  1992年   16篇
  1991年   19篇
  1990年   15篇
  1989年   6篇
  1988年   6篇
  1987年   23篇
  1986年   15篇
  1985年   6篇
  1983年   1篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1976年   1篇
排序方式: 共有796条查询结果,搜索用时 78 毫秒
51.
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and play a role in the pathogenesis of certain invasive bacteria. In this study, we reported for the first time here that Providencia alcalifaciens, a member of the family Enterobacteriaceae, produces a superoxide dismutase (SOD) as a major protein in culture supernatants. This protein was purified by a series of column chromatographic separations. The N-terminal amino acid sequence of the protein was determined to be highly homologous to manganese superoxide dismutase of Escherichia coli or Salmonella reported. The gene (sodA) encoding for SOD of P. alcalifaciens was cloned and sequenced. The sodA-encoded protein has a molecular weight of about 23.5 kDa, and the DNA sequence of P. alcalifaciens sodA gene (627 bp) has about 83% identity to the E. coli SOD gene. We constructed a sodA deletion mutant and its complemented strain of P. alcalifaciens. In J774, a macrophage cell line, the sodA deletion mutant was more susceptible to killing by macrophages than the wildtype strain and its complemented strain. When we injected the mutant strain, its complemented strain and wildtype strain intraperitoneally into DDY strain mice, we found that the sodA deletion mutant proved significantly less virulent while the complemented strain recovered the virulence to the same level of wildtype strain of P. alcalifaciens. These results suggested that manganese superoxide dismutase plays an important role in intracellular survival of P. alcalifaciens.  相似文献   
52.
Through process transfer and optimization for increased antibody production to 3 g/L for a GS-CHO cell line, an undesirable drop in antibody Fc galactosylation was observed. Uridine (U), manganese chloride (M), and galactose (G), constituents involved in the intracellular galactosylation process, were evaluated in 2-L bioreactors for their potential to specifically increase antibody galactosylation. These components were placed in the feed medium at proportionally increasing concentrations from 0 to 20 × UMG, where a 1× concentration of U was 1 mM, a 1× concentration of M was 0.002 mM, and a 1× concentration of G was 5 mM. Antibody galactosylation increased rapidly from 3% at 0× UMG up to 21% at 8× UMG and then more slowly to 23% at 20× UMG. The increase was primarily due to a shift from G0F to G1F, with minimal impact on other glycoforms or product quality attributes. Cell culture performance was largely not impacted by addition of up to 20× UMG except for suppression of glucose consumption and lactate production at 16 and 20× UMG and a slight drop in antibody concentration at 20× UMG. Higher accumulation of free galactose in the medium was observed at 8× UMG and above, coincident with achieving the plateau of maximal galactosylation. A concentration of 4× UMG resulted in achieving the target of 18% galactosylation at 2-L scale, a result that was reproduced in a 1,000-L run. Follow-up studies to evaluate the addition of each component individually up to 12× concentration revealed that the effect was synergistic; the combination of all three components gave a higher level of galactosylation than addition of the each effect independently. The approach was found generally useful since a second cell line responded similarly, with an increase in galactosylation from 5% to 29% from 0 to 8× UMG and no further increase or impact on culture performance up to 12× UMG. These results demonstrate a useful approach to provide exact and specific control of antibody galactosylation through manipulation of the concentrations of uridine, manganese chloride, and galactose in the cell culture medium.  相似文献   
53.
Nature invented a catalyst about 3Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.  相似文献   
54.
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial catalysts that split water, it is important to understand the mechanism of the reaction. The recently published X-ray crystal structures of cyanobacterial PSII complexes provide information on the structure of the Mn and Ca ions, the redox-active tyrosine called YZ and the surrounding amino acids that comprise the O2-evolving complex (OEC). The emerging structure of the OEC provides constraints on the different hypothesized mechanisms for O2 evolution. The water oxidation mechanism of PSII is discussed in the light of biophysical and computational studies, inorganic chemistry and X-ray crystallographic information.  相似文献   
55.
Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural enzyme photosystem II and Fe-hydrogenases. An important theme in this biomimetic effort is that of coupled electron-transfer reactions, which have so far received only little attention. (i) Each absorbed photon leads to charge separation on a single-electron level only, while catalytic water splitting and hydrogen production are multi-electron processes; thus there is the need for controlling accumulative electron transfer on molecular components. (ii) Water splitting and proton reduction at the potential catalysts necessarily require the management of proton release and/or uptake. Far from being just a stoichiometric requirement, this controls the electron transfer processes by proton-coupled electron transfer (PCET). (iii) Redox-active links between the photosensitizers and the catalysts are required to rectify the accumulative electron-transfer reactions, and will often be the starting points of PCET.  相似文献   
56.
The molecular oxygen produced in photosynthesis is generated via water oxidation at a manganese-calcium cluster called the oxygen-evolving complex (OEC). While studies in biophysics, biochemistry, and structural and molecular biology are well known to provide deeper insight into the structure and workings of this system, it is often less appreciated that biomimetic modelling provides the foundation for interpreting photosynthetic reactions. The synthesis and characterization of small model complexes, which either mimic structural features of the OEC or are capable of providing insight into the mechanism of O2 evolution, have become a vital contributor to this scientific field. Our group has contributed to these findings in recent years through synthesis of model complexes, spectroscopic characterization of these systems and probing the reactivity in the context of water oxidation. In this article we describe how models have made significant contributions ranging from understanding the structure of the water-oxidation centre (e.g. contributions to defining a tetrameric Mn3Ca-cluster with a dangler Mn) to the ability to discriminate between different mechanistic proposals (e.g. showing that the Babcock scheme for water oxidation is unlikely).  相似文献   
57.
Manganese superoxide dismutase (MnSOD) is vital to the protection of mitochondria and cells against oxidative stress. Earlier, we demonstrated that catalytically active homo-tetramer of MnSOD can be stabilized by oxidative cross-linking. Here we report that this effect may be translated into increased radioresistance of mouse embryonic cells (MECs) by pre-exposure to oxidative stress. Pre-treatment of MECs with antimycin A, rotenone or H2O2 increased their survival after irradiation. Using MnSOD siRNA, we show that MECs with decreased MnSOD levels displayed a lowered ability to preconditioning. Thus oxidative preconditioning may be used for targeted regulation of MnSOD.

Structured summary

MINT-7288408: MnSOD (uniprotkb:P04179) and MnSOD (uniprotkb:P04179) physically interact (MI:0915) by zymography (MI:0512)  相似文献   
58.
Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds presenting low water solubility and high hydrophobicity, which greatly hampers their natural biodegradation. The enzymatic degradation of a model compound, anthracene, was evaluated in presence of a miscible solvent for an increased solubility. Manganese peroxidase, a ligninolytic enzyme from white-rot fungi, was used as biocatalyst in a medium containing acetone. The kinetic parameters of the enzymatic degradation of anthracene, obtained from fed-batch experiments, were applied to model the operation of a continuous reactor. Kinetics comprised a Michaelis-Menten equation, modified with an autocatalytic term, assumed to the effect of quinones acting as electron carriers, and a logistic function related to enzyme activity. The continuous reactor has been operated for 108 h, attaining a 90% of anthracene degradation, which demonstrated the feasibility of the system for its application in the removal of poorly soluble compounds. The model of this reactor permitted to predict accurately anthracene degradation in different conditions, such as external addition of anthraquinone and different enzymatic activities.  相似文献   
59.
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号