首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   45篇
  国内免费   50篇
  2024年   1篇
  2023年   4篇
  2022年   11篇
  2021年   6篇
  2020年   25篇
  2019年   13篇
  2018年   23篇
  2017年   17篇
  2016年   17篇
  2015年   26篇
  2014年   24篇
  2013年   57篇
  2012年   13篇
  2011年   23篇
  2010年   19篇
  2009年   25篇
  2008年   33篇
  2007年   27篇
  2006年   29篇
  2005年   37篇
  2004年   40篇
  2003年   31篇
  2002年   18篇
  2001年   24篇
  2000年   24篇
  1999年   8篇
  1998年   17篇
  1997年   9篇
  1996年   10篇
  1995年   15篇
  1994年   13篇
  1993年   27篇
  1992年   16篇
  1991年   19篇
  1990年   15篇
  1989年   6篇
  1988年   6篇
  1987年   23篇
  1986年   15篇
  1985年   6篇
  1983年   1篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1976年   1篇
排序方式: 共有796条查询结果,搜索用时 15 毫秒
11.
12.
Li[Ni0.9Co0.1]O2 (NC90), Li[Ni0.9Co0.05Mn0.05]O2 (NCM90), and Li[Ni0.9Mn0.1]O2 (NM90) cathodes are synthesized for the development of a Co‐free high‐energy‐density cathode. NM90 maintains better cycling stability than the two Co‐containing cathodes, particularly under harsh cycling conditions (a discharge capacity of 236 mAh g?1 with a capacity retention of 88% when cycled at 4.4 V under 30 °C and 93% retention when cycled at 4.3 V under 60 °C after 100 cycles). The reason for the enhanced stability is mainly the ability of NM90 to absorb the strain associated with the abrupt anisotropic lattice contraction/extraction and to suppress the formation of microcracks, in addition to enhanced chemical stability from the increased presence of stable Mn4+. Although the absence of Co deteriorates the rate capability, this can be overcome as the rate capability of the NM90 approaches that of the NCM90 when cycled at 60 °C. The long‐term cycling stability of NM90 is confirmed in a full cell, demonstrating that it is one of the most promising Co‐free cathodes for high‐energy‐density applications. This study not only provides insight into redefining the role of Mn in a Ni‐rich cathode, it also represents a clear breakthrough in achieving a commercially viable Co‐free Ni‐rich layered cathode.  相似文献   
13.
14.
15.
The adaptation of insects to environmental changes can constitute a crucial factor in their development and activity. The response of Cabera pusaria L. (Lepidoptera: Geometridae) caterpillars to high manganese (Mn) concentrations in the diet was studied. Birch leaves were treated by dipping in MnCl2·4H2O solutions, thereby achieving Mn contents of 370 (T0), 695 (T1), 3 198 (T2), and 6 302 mg kg−1 (T3). The reactions were determined by observing caterpillar mortality, development time, food consumption, and pupal weight. Manganese concentrations in larval excrement, pupae, and food were determined. Manganese in the diet at unnaturally increased concentrations caused great stress for caterpillars. All individuals in the treatment with the highest Mn concentration (T3) died during rearing and successful pupation occurred in only four individuals in T2. Even in the case of caterpillars from T1 (twofold higher than T0) a negative reaction (increased food consumption and prolonged development) was recorded. We also determined significantly increased Mn concentration in pupae from T1 (T2 and T3 were not included in this evaluation due to mortality) and excrement (T1‒T3) compared with T0 having a natural Mn concentration. Caterpillars were seen to eliminate negatively acting dietary Mn by its translocation to excrement. However, the highest mortality rate in T2 and T3 and negative reactions of individuals in T1 very likely demonstrate energy insufficiency and the high energy requirements of Mn elimination mechanisms.  相似文献   
16.
Lignocellulosic residues: Biodegradation and bioconversion by fungi   总被引:5,自引:0,他引:5  
The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.  相似文献   
17.
18.
A facile one‐step hydrothermal co‐deposition method for growth of ultrathin Ni(OH)2‐MnO2 hybrid nanosheet arrays on three dimensional (3D) macroporous nickel foam is presented. Due to the highly hydrophilic and ultrathin nature of hybrid nanosheets, as well as the synergetic effects of Ni(OH)2 and MnO2, the as‐fabricated Ni(OH)2‐MnO2 hybrid electrode exhibits an ultrahigh specific capacitance of 2628 F g?1. Moreover, the asymmetric supercapacitor with the as‐obtained Ni(OH)2‐MnO2 hybrid film as the positive electrode and the reduced graphene oxide as the negative electrode has a high energy density (186 Wh kg?1 at 778 W kg?1), based on the total mass of active materials.  相似文献   
19.
In Pinal Creek, Arizona, Mn oxyhydroxides (MnOx) collect as thick precipitates on surface sediment, within the streambed, beneath algal mats, and on submerged and emergent plants and mosses. The proximate source of Mn is a thick, alluvial alkaline aquifer that was contaminated by past acid mine waste disposal practices associated with copper mines located upstream in the Globe–Miami area. Almost every organism in Pinal Creek is coated with MnOx. Some are actively precipitating manganese, and others are doing it passively. The variety and seasonality of epilithic biological processes resulting in Mn oxidation (epiprecipitation) was studied for more than a year by analyzing artificial substrates placed in surface water having different flows and different vegetation types and densities. Most epiprecipitation took place on the holdfasts of the green alga, Ulothrix sp., and the iron bacterium, Leptothrix discophora. Extensive patches of MnOx also coated extracellular polymeric substances of fungal hyphae and bacterial filaments. The dominant macroscopic precipitation was in the form of MnOx clumps on mosses, green algae, and cyanobacterial mats, consistent with precipitation by pH elevation during photosynthesis. Most oxidation occurred in the spring and summer, in agreement with thermal, biological, and chemical activity models. More biological oxidation occurred in swifter water, consistent with oxygen elevation models. The efficiency of this naturally occurring, diverse ecosystem suggests that remediation efforts to remove metal contaminants such as Mn should focus on creation of habitats that raise biodiversity.US Geological Survey, retired  相似文献   
20.
Campylobacter jejuni is a foodborne bacterial pathogen, which is now considered as a leading cause of human bacterial gastroenteritis. The information regarding ribonucleases in C. jejuni is very scarce but there are hints that they can be instrumental in virulence mechanisms. Namely, PNPase (polynucleotide phosphorylase) was shown to allow survival of C. jejuni in refrigerated conditions, to facilitate bacterial swimming, cell adhesion, colonization and invasion. In several microorganisms PNPase synthesis is auto-controlled in an RNase III (ribonuclease III)-dependent mechanism. Thereby, we have cloned, overexpressed, purified and characterized Cj-RNase III (C. jejuni RNase III). We have demonstrated that Cj-RNase III is able to complement an Escherichia coli rnc-deficient strain in 30S rRNA processing and PNPase regulation. Cj-RNase III was shown to be active in an unexpectedly large range of conditions, and Mn2+ seems to be its preferred co-factor, contrarily to what was described for other RNase III orthologues. The results lead us to speculate that Cj-RNase III may have an important role under a Mn2+-rich environment. Mutational analysis strengthened the function of some residues in the catalytic mechanism of action of RNase III, which was shown to be conserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号