首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   999篇
  免费   64篇
  国内免费   67篇
  2023年   11篇
  2022年   10篇
  2021年   21篇
  2020年   30篇
  2019年   20篇
  2018年   24篇
  2017年   18篇
  2016年   27篇
  2015年   36篇
  2014年   52篇
  2013年   46篇
  2012年   49篇
  2011年   33篇
  2010年   23篇
  2009年   24篇
  2008年   43篇
  2007年   38篇
  2006年   36篇
  2005年   47篇
  2004年   35篇
  2003年   35篇
  2002年   31篇
  2001年   48篇
  2000年   39篇
  1999年   21篇
  1998年   32篇
  1997年   24篇
  1996年   33篇
  1995年   26篇
  1994年   22篇
  1993年   19篇
  1992年   28篇
  1991年   16篇
  1990年   23篇
  1989年   13篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1985年   6篇
  1984年   11篇
  1983年   4篇
  1982年   6篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有1130条查询结果,搜索用时 15 毫秒
51.
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmitted into daughter cells and through what mechanisms are currently under active investigation. Previously, methylation was considered to be irreversible, but the recent discovery of histone lysine demethylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, besides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent progresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes  相似文献   
52.
Our previous study documented a reproductive function for the male‐transmitted mitochondrial DNA (mtDNA)‐encoded cytochrome c oxidase subunit II (MCOX2) protein in a unionoid bivalve. Here, immunoblotting, immunohistochemistry and immunoelectron microscopy analyses demonstrate that the female‐transmitted protein (FCOX2) is: (i) expressed in both male and female gonads; (ii) maximally expressed in ovaries just prior to the time of the annual fertilization event; (iii) displayed in the cytoplasm and more strongly in the plasma membrane (microvilli), vitelline matrix and vitelline envelope of mature ovarian eggs; and (iv) strongly localized to the vitelline matrix of some eggs just prior to fertilization. These findings represent evidence for the extra‐mitochondrial localization of an mtDNA‐encoded gene product and are consistent with multifunctionality for FCOX2 in eggs.  相似文献   
53.
Animal vocalizations play an important role in individual recognition, kin recognition, species recognition, and sexual selection. Despite much work in these fields done on birds virtually nothing is known about the heritability of vocal traits in birds. Here, we study a captive population of more than 800 zebra finches ( Taeniopygia guttata ) with regard to the quantitative genetics of call and song characteristics. We find very high heritabilities in nonlearned female call traits and considerably lower heritabilities in male call and song traits, which are learned from a tutor and hence show much greater environmental variance than innate vocalizations. In both sexes, we found significant heritabilities in several traits such as mean frequency and measures of timbre, which reflect morphological characteristics of the vocal tract. These traits also showed significant genetic correlations with body size, as well as positive genetic correlations between the sexes, supporting a scenario of honest signaling of body size through genetic pleiotropy ("index signal"). In contrast to such morphology-related voice characteristics, classical song features such as repertoire size or song length showed very low heritabilities. Hence, these traits that are often suspected to be sexually selected would hardly respond to current directional selection.  相似文献   
54.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   
55.
褐飞虱对马拉硫磷的抗性遗传和交互抗性研究   总被引:2,自引:0,他引:2  
毒力测定显示,抗马拉硫磷品对杀螟松、二嗪磷、异丙威和仲丁威都有明显的交互抗性产生,但对醚菊酯和吡虫啉没有表现出显的交互抗性。抗性遗传研究显示,正交和反交后代F1和F1'的显性值D分别为0.4014和0.3780,说明抗性主效基因是不完全显性的。通过自交后代F2和回交后代BC的LD-p线观察及与期望曲线比较,证明抗性遗传由两个或两个以上的基因控制。  相似文献   
56.
Peanut rust (Puccinia arachidis Speg.) affects pod yield and quality up to an extent of 10–50%. Efforts have been made on transferring the rust resistance gene to cultivated peanut species through interspecific hybridization. But, in most of the cases, it failed due to linkage drag of undesirable plant and pod features. Identification of tightly linked molecular markers will help to identify the desirable recombinants more efficiently. A recombinant inbred line population comprising 164 lines was developed from a cross between a rust‐resistant parent VG 9514 and a rust susceptible parent TAG 24. Using a modified bulk segregant analysis, 243 transposable element (TE) primer pairs were screened for putative linkage with rust resistance. Of the 243, 40 TE primer pairs were found polymorphic between parents and two transposable element markers, and TE 360 and TE 498 were found associated with rust resistance gene. Based on genetic mapping, TE 360 was found linked to the rust resistance gene at 4.5 cM distance. Identification of such markers could be applied for marker‐assisted selection of rust resistance plants in peanut.  相似文献   
57.
Inferences about the role of epigenetics in plant ecology and evolution are mostly based on studies of cultivated or model plants conducted in artificial environments. Insights from natural populations, however, are essential to evaluate the possible consequences of epigenetic processes in biologically realistic scenarios with genetically and phenotypically heterogeneous populations. Here, we explore associations across individuals between DNA methylation transmissibility (proportion of methylation‐sensitive loci whose methylation status persists unchanged after male gametogenesis), genetic characteristics (assessed with AFLP markers), seed size variability (within‐plant seed mass variance), and realized maternal fecundity (number of recently recruited seedlings), in three populations of the perennial herb Helleborus foetidus along a natural ecological gradient in southeastern Spain. Plants (sporophytes) differed in the fidelity with which DNA methylation was transmitted to descendant pollen (gametophytes). This variation in methylation transmissibility was associated with genetic differences. Four AFLP loci were significantly associated with transmissibility and accounted collectively for ~40% of its sample‐wide variance. Within‐plant variance in seed mass was inversely related to individual transmissibility. The number of seedlings recruited by individual plants was significantly associated with transmissibility. The sign of the relationship varied between populations, which points to environment‐specific, divergent phenotypic selection on epigenetic transmissibility. Results support the view that epigenetic transmissibility is itself a phenotypic trait whose evolution may be driven by natural selection, and suggest that in natural populations epigenetic and genetic variation are two intertwined, rather than independent, evolutionary factors.  相似文献   
58.
Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.  相似文献   
59.
Rearrangements between homologous chromosomes are extremely rare and manifest mainly as monosomic or trisomic offsprings. There are remarkably few reports of balanced homologous chromosomal translocation t (22q; 22q) and only two cases of transmission of this balanced homohologous rearrangement from mother to normal daughter are reported. Robersonian translocation carriers in non-homologous chromosomes have the ability to have an unaffected child. However, it is not possible to have an unaffected child in cases with Robersonian translocations in homologous chromosomes. Carriers of homologous chromosome 22 translocations with maternal uniparental disomy do not have any impact on their phenotype. We are presenting a family with a history of multiple first trimester miscarriages and an unexpected inheritance of balanced homologous translocation of chromosome 22 with paternal uniparental disomy. There are no data available regarding the impact of paternal UPD 22 on the phenotype. We claim this to be the first report explaining that paternal UPD 22 does not impact the phenotype.  相似文献   
60.
The dollar spot disease, incited by Sclerotinia homoeocarpa F.T. Bennet, is one of the most important diseases of creeping bentgrass (Agrostis stolonifera L.) on golf courses. An understanding of the inheritance of dollar spot resistance could enhance genetic improvement efforts in creeping bentgrass. The objectives of this study were to evaluate the response of two creeping bentgrass crosses to two different isolates of S. homoeocarpa, determine gene action and identify number of loci involved in resistance to individual fungal isolates. Parental clones, pseudo F2, pseudo F3, BC1 and BC2 progenies from two crosses were established in a field trial in a randomized complete block split‐plot design in the fall of 2002. Progeny of each generation (subplots) were inoculated with each of two isolates of S. homoeocarpa (main plots) applied at a rate of 0.25 g/m2 of prepared inoculum and evaluated for dollar spot disease. Minimum loci calculations averaged 1.0–2.6. Midparent heterosis calculations were not significant. Backcross population means were closest to the recurrent parent. Generation mean analysis supports a simple additive‐dominance model for both crosses and both isolates, although there was also some evidence of epistatic gene action depending on the cross and the isolate. These results confirm previous research that dollar spot disease is quantitatively inherited and indicate that there may be a few genes interacting in a mainly additive fashion to confer dollar spot disease resistance in creeping bentgrass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号