首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   10篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   4篇
  1987年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
41.
Genes encoding seven enzymes of the monolignol pathway were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference. In each case, total flux into lignin was reduced, with the largest effects arising from the downregulation of earlier enzymes in the pathway. The downregulation of l-phenylalanine ammonia-lyase, 4-coumarate 3-hydroxylase, hydroxycinnamoyl CoA quinate/shikimate hydroxycinnamoyl transferase, ferulate 5-hydroxylase or caffeic acid 3-O-methyltransferase resulted in compositional changes in lignin and wall-bound hydroxycinnamic acids consistent with the current models of the monolignol pathway. However, downregulating caffeoyl CoA 3-O-methyltransferase neither reduced syringyl (S) lignin units nor wall-bound ferulate, inconsistent with a role for this enzyme in 3-O-methylation ofS monolignol precursors and hydroxycinnamic acids. Paradoxically, lignin composition differed in plants downregulated in either cinnamate 4-hydroxylase or phenylalanine ammonia-lyase. No changes in the levels of acylated flavonoids were observed in the various transgenic lines. The current model for monolignol and ferulate biosynthesis appears to be an over-simplification, at least in alfalfa, and additional enzymes may be needed for the 3-O-methylation reactions of S lignin and ferulate biosynthesis.  相似文献   
42.
43.
BACKGROUND AND AIMS: Petioles of huge solitary leaves of mature plants of Amorphophallus resemble tree trunks supporting an umbrella-like crown. Since they may be 4 m tall, adaptations to water transport in the petioles are as important as adaptations to mechanical support of lamina. The petiole is a cylindrical shell composed of compact unlignified tissue with a honeycomb aerenchymatous core. In both parts numerous vascular bundles occur, which are unique because of the scarcity of lignified elements. In the xylemic part of each bundle there is a characteristic canal with unlignified walls. The xylem pecularities are described and interpreted. MATERIAL: Vascular bundles in mature petioles of Amorphophallus titanum and A. gigas plants were studied using light and scanning electron microscopy. KEY RESULTS: The xylemic canal represents a file of huge metaxylem tracheids (diameter 55-200 microm, length >30 mm) with unlignified lateral walls surrounded by turgid parenchyma cells. Only their end walls, orientated steeply, have lignified secondary thickenings. The file is accompanied by a strand of narrow tracheids with lignified bar-type secondary walls, which come into direct contact with the wide tracheid in many places along its length. CONCLUSIONS: The metaxylem tracheids in A. petioles are probably the longest and widest tracheids known. Only their end walls have lignified secondary thickenings. Tracheids are long due to enormous intercalary elongation and wide due to a transverse growth mechanism similar to that underlying formation of aerenchyma cavities. The lack of lignin in lateral walls shifts the function of 'pipe walls' to the turgid parenchyma paving the tracheid. The analogy to carinal canals of Equisetum, as well as other protoxylem lacunas is discussed. The stiff partitions between the long and wide tracheids are interpreted as structures similar to the end walls in vessels.  相似文献   
44.
45.
Transverse sections of immature and mature sugarcane internodes were investigated anatomically with white and fluorescence light microscopy. The pattern of lignification and suberization was tested histo-chemically. Lignification began in the xylem of vascular bundles and progressed through the sclerenchymatic bundle sheath into the storage parenchyma. Suberization began in parenchyma cells adjacent to vascular bundle sheaths and spread to the storage parenchyma and outer sheath cells. In mature internodes most of the storage parenchyma was lignified and suberized to a significant degree, except in portions of walls of isolated cells. The pattern of increasing lignification and suberization in maturing internodes more or less paralleled an increase of sucrose in stem tissue. In mature internodes having a high sucrose concentration, the vascular tissue was surrounded by thick-walled, lignified and suberized sclerenchyma cells. The apoplastic tracer dyes triso-dium 3-hydroxy-5,8,10-pyrenetrisulfonate (PTS) and amido black 10 B, fed into cut ends of the stalk, wereconfined to the vascular bundles in all internodes above the one that was cut — with no dye apparently in storage parenchyma tissue. Thus both structural and experimental evidence is consistent with vascular tissue being increasingly isolated from the storage parenchyma as maturation of the tissue proceeds. We conclude that in mature internodes the pathway for sugars from the phloem to the storage parenchyma is symplastic. The data suggest that an increasingly greater role for a symplastic pathway of sugar transfer occurs as the tissue undergoes lignification/suberization.  相似文献   
46.
Seven-day-old seedlings of the near-isogenic wheat ( Triticum aestivum L.) lines Prelude and Prelude-Sr5, susceptible and resistant to wheat stem rust, respectively, were inoculated with uredospores of the oat crown rust fungus Puccinia coronata Cda. f. sp. avenae Fraser & Led. Fluorescence microscopy revealed that the majority of colonies developed intercellular infection structures including haustorial mother cells and haustoria after penetration of wheat mesophyll cells. All penetrated cells became necrotic, and exhibited bright yellow autofluorescence. This autofluorescence was not extractable with alkali, and fluorescent cells stained positively with phloroglucinol/HCI, suggesting that hypersensitive cell death was correlated with cellular lignification. Accordingly, the lignin biosynthetic enzymes phenylalanine ammonia-lyase (EC4.3.1.5). 4-coumarate:CoA ligase (EC6.2.1.12), cinnamyl-alcohol dehydrogenase (EC1.1.1.149), and peroxidases (EC1.11.1.7) increased in activity during the expression of resistance. The induced pattern of peroxidase iso/ymes closely resembled that observed for highly incompatible wheat/wheat stem rust interactions. Furthermore, an elieitor was extracted from oat crown rust germlings. which induces lignification when injected into the intercellular space of wheat leaves. This elieitor appears to be functionally similar to that isolated from wheat stem rust germlings. The results suggest that the non-host resistance of wheat to the xenopara-site oat crown rust closely resembles the race/cullivar-speeific resistant mechanism of highly resistant wheat varieties to wheat stem rust.  相似文献   
47.
48.
The rooting recalcitrant rac Nicotiana tabacum cv Xanthi mutant has been multiplied in vitro under the form of shoots in parallel to wild-type. rac Shoots grew at a lower rate and did not root whatever the treatments when compared to those of wild-type shoots. They were characterized by a higher lignin level, a higher total specific peroxidase activity with higher activity of both acidic and basic isoperoxidases (although missing and supernumerary isoenzymes were observed), and higher ethylene production. These observations might be causally related to growth inhibitions as similar incidences have been noted in different stress-induced growth limitation, through cell wall rigidification and auxin catabolism. The relationship between these aspects and rooting recalcitrance remains to be explored.  相似文献   
49.
Increases in cinnamate 4-hydroxylase and hydroxycinnamate:CoA ligase activities preceded the deposition of lignin around wounds in wheat leaves infecte  相似文献   
50.
Arabidopsis abcb1 abcb19 double mutants defective in the auxin transporters ABCB1/PGP1 and ABCB19/PGP19 are altered in stamen elongation, anther dehiscence and pollen maturation. To assess the contribution of these transporters to stamen development we performed phenotypic, histological analyses, and in situ hybridizations on abcb1 and abcb19 single mutant fl owers. We found that pollen maturation and anther dehiscence are precocious in the abcb1 but not in the abcb19 mutant. Accordingly, endothecium ligni fication is altered only in abcb1 anthers. Both abcb1 and abcb1 abcb19 stamens also show altered early development, with asynchronous anther locules and a multilayer tapetum. DAPI staining showed that the timing of meiosis is asynchronous in abcb1 abcb19 anther locules, while only a small percentage of pollen grains are nonviable according to Alexander's staining. In agreement, TAM(TARDY ASYNCHRONOUS MEIOSIS), as well as BAM2(BARELY ANY MERISTEM)—involved in tapetal cell development—are overexpressed in abcb1 abcb19 young fl ower buds. Corre spondingly, ABCB1 and ABCB19 mRNA localization supports the observed phenotypes of abcb1 and abcb1 abcb19 mutant anthers. In conclusion, we provide evidence that auxin transport plays a signi ficant role both in early and late stamen development: ABCB1 plays a major role during anther development, while ABCB19 has a synergistic role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号