首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
  国内免费   30篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2019年   2篇
  2018年   8篇
  2017年   6篇
  2016年   1篇
  2015年   7篇
  2014年   8篇
  2013年   4篇
  2012年   8篇
  2011年   13篇
  2010年   12篇
  2009年   12篇
  2008年   4篇
排序方式: 共有92条查询结果,搜索用时 62 毫秒
31.
利用滤纸培养基从象白蚁(Nasutitermes sp.)肠道中分离出一个具有纤维素降解能力,能够降解滤纸的混合菌群。在起始pH 6.5,37℃培养条件下培养6d可得到最高的纤维素酶(CMCase和FPase)活性。在优化条件下,混合菌群的滤纸降解率在第15d达到最大值66.3%,显示出较高的滤纸降解效率。酶谱活性染色分析显示,混合菌群在以滤纸为唯一碳源的生长过程中至少表达了8种内切葡聚糖酶和4种木聚糖酶。扫描电镜观察到该混合菌群包含短杆状和球形两种形态的细菌。基于16SrRNA基因的系统发育分析表明,该混合菌群中至少存在两种细菌,分别属于沙雷氏菌属(Serratia)和类芽胞杆菌属(Paenibacillus)。这两种细菌协同降解纤维素的机制值得进一步深入研究。  相似文献   
32.
细胞外记录研究报道听中枢神经元的调制方向选择性和前掩蔽均与神经抑制有关,但由于未能获得抑制性突触输入作用的直接证据,尚存有争议。本研究在20只昆明小鼠(Mus musculus Km)上进行在体细胞内记录,研究了下丘神经元调频声的调制方向选择性或偏好与其前掩蔽之间的关系。共获得93个下丘神经元,对其中37个产生动作电位(action potential,AP)发放且数据完整的神经元做了分析和讨论。在上扫选择性神经元(n=12)频率调谐的高频边存在抑制性突触后电位构成的抑制区,而在下扫选择性神经元(n=8)的低频边存在抑制区,在不具有调制方向选择性的神经元(n=17)频率调谐的高、低频边均未观察到有明显的抑制区,表明这些抑制区是调频声调制方向选择性形成的重要原因。比较上扫和下扫调频声对上、下扫选择性和非选择性神经元的前掩蔽效应,结果显示具有调制方向选择性的神经元,其所偏好方向的调频声对最佳频率(best frequency,BF)声产生的前掩蔽强于非偏好的调频声;而无调制方向选择性神经元,上、下扫调频声的掩蔽效应无差异。以上结果提示,AP后跟随的强抑制性突触后电位可能是调制方向选择性神经元前掩蔽产生的机制。  相似文献   
33.
植物螯合肽(phytochelatins,PCs)是由植物螯合肽合酶催化谷胱甘肽合成的一类生物小分子,结构式为(γ-Glu-Cys)n-Gly(n=2-11),在真菌和高等植物耐受重金属胁迫机制中具有重要作用。近年来,人们在Pc介导重金属脱毒害的分子机理研究上取得了重要进展,发JLSpHMT1和SpABC2是PC在裂殖酵母中介导重金属液泡区室化的主要转运蛋白,鉴定了拟南芥液泡膜PC转运蛋AtABCC1和AtABCC2。此外,PCs也可能在超积累植物细胞内对重金属脱毒害具有重要功能。  相似文献   
34.
激活胆碱能受体结合去极化电流诱导产生的持续性放电(persistent activity,PA)是神经元产生可塑性的一种特征表现。小鼠初级听皮层(primary auditory cortex,AI)神经元PA的产生与毒蕈碱受体(即M型受体)密切相关,但其涉及的毒蕈碱受体亚型尚不清楚。本研究采用离体脑片全细胞膜片钳技术结合药理学方法,探讨幼年小鼠AI第V层锥体神经元PA与毒蕈碱受体亚型之间的关系。结果显示,激活胆碱能受体并同时注入去极化电流可诱导锥体神经元产生PA。M1、M2和M3受体拮抗剂分别能阻断PA的产生,而M4受体拮抗剂对PA的产生没有影响。该结果表明M1、M2和M3毒蕈碱受体均参与幼年小鼠AI第V层锥体神经元PA的形成,而M4毒蕈碱受体不参与PA的形成。  相似文献   
35.
昆虫肠道微生物分离培养策略及研究进展   总被引:3,自引:0,他引:3  
梅承  范硕  杨红 《微生物学报》2018,58(6):985-994
昆虫肠道作为一种特殊生境,生存着多种多样的共生微生物,并且肠道内的很多微生物与自然界其他生境的微生物种类显著不同。基于对纯培养微生物的研究,科学家们发现,肠道微生物与昆虫营养、生长发育及免疫等功能密切相关。因此,分离培养是发现微生物新种类、新基因和新功能的基础。然而,自然界可培养的微生物大约只占总数的1%。为了能够对更多的微生物进行分离和培养,近二十年来,微生物学家们发展了诸多新的培养技术和策略并利用它们从昆虫肠道分离出了很多新的难培养微生物。这些新的微生物种类极大地丰富了我们对肠道共生微生物生理作用与功能的认识。以此为基础,本文综述了昆虫肠道微生物分离培养的策略及研究进展,并对未来该领域的发展进行了展望。  相似文献   
36.
周璇  靳元霈  赵娜  伍刚  张征锋  谢波 《微生物学通报》2022,49(11):4538-4548
【背景】水体中的藻类、细菌及这些微生物之间的相互作用对水体生态系统的功能有着重要作用。近年来,一些河流、湖泊等淡水资源的盐渍化不断加重,对水体生态系统造成严重影响。然而,高盐胁迫条件如何影响藻类与其他细菌的相互作用,以及是否存在能够促进藻类耐盐能力的有益细菌等问题尚未得到深入研究。【目的】分离和鉴定可以促进淡水藻类莱茵衣藻抗盐能力的细菌,并开展相关机制分析。【方法】通过富集培养、筛选和共接种实验,获得可以促进衣藻耐盐的细菌;基于活细胞浓度、叶绿素含量等参数评价衣藻在不同条件下的生长能力;对菌株进行16S rRNA基因序列分析和基因组分析,预测其可能的菌藻相互作用机制。【结果】获得一株在250-290 mmol/L NaCl条件下可以显著增强衣藻耐盐能力的菌株MEZX29,16S rRNA基因序列分析表明,该菌可能属于Rhodococcus qingshengii;基因组分析结果表明,该细菌含有参与糖代谢、乙烯合成、生物膜形成等途径的基因,这些基因可能在促进衣藻抗盐过程中起到重要作用。【结论】Rhodococcus qingshengiiMEZX29可以增强莱茵衣藻21gr抵抗高盐胁迫的能力,为研究藻类与其他微生物之间的有益相互作用提供了新的材料。  相似文献   
37.
强烈的噪声会损伤耳蜗毛细胞、听神经、耳蜗毛细胞与听神经之间的突触连接,造成噪声性听力损失(noise-induced hearingloss,NIHL)。近年来的研究显示,动物耳蜗具有昼夜节律性,使得它们对昼夜噪声的敏感性不同。耳蜗昼夜节律与脑源性神经营养因子以及糖皮质激素水平之间存在着一定的关系,从而影响动物噪声暴露后听力损失的程度。本文综述了昼夜节律调节耳蜗对噪声敏感性研究进展,并对未来的研究方向进行了展望。  相似文献   
38.
蝙蝠具有高度发达的回声定位系统,能够准确地处理和整合不断变化环境中的声学参数,以保持最佳的生理和行为状态。这种行为的神经生理机制已经得到了广泛的研究。本文主要探究了CF-FM蝙蝠听觉中枢处理种属特异性声信号、共变参数、多普勒频移补偿信号及多谐波声信号的神经机制,可有助于了解回声定位蝙蝠处理行为相关声信号的神经策略。同时本文也提出将来可以CF-FM蝙蝠作为模式动物进行更深入的胞内研究。  相似文献   
39.
单核细胞增生李斯特菌(Listeria monocytogenes,LM)是重要的革兰氏阳性食源性致病菌,易在食品以及各种食品加工、运输和保藏设备的接触面形成生物被膜,从而具有更强的抗逆性而难以彻底清除,因此成为食品卫生安全的重要隐患.PrfA是LM毒力基因转录表达的重要调控因子,通过比较研究LM野生株(EGD和EGDe)、PrfA缺失株(EGDAprfA和EGDeAprfA)、无害李斯特菌(Listeria innocua,LI),携带组成性表达PrfA蛋白的重组无害李斯特菌(LI-pERL3-prfA*)以及重组单核细胞增生李斯特菌(EGDeΔprfA-pERL3-prfA*)生物被膜形成能力的差异,探讨LM重要的毒力调控蛋白PrfA对生物被膜形成的影响.实验结果显示:LM野生株具有较强的生物被膜形成能力,而LI形成生物被膜的能力最弱;PrfA的缺失能降低LM生物被膜的形成能力;组成性高量表达PrfA蛋白可以回复EGDeΔprfA的生物被膜形成能力,但对LI没有增强作用.以上实验结果表明:PrfA在LM生物被膜形成中具有重要的促进作用.  相似文献   
40.
木聚糖是双子叶植物次生细胞壁中最主要的半纤维素,含有木聚糖的次生壁是最丰富的植物生物质,广泛应用于能源、制浆、造纸和纺织业中,但其主要组分戊糖对细胞壁生物质利用具有较大影响。揭示木聚糖合成的分子机制,为遗传修饰细胞壁组成,更好地利用细胞壁生物质提供新的策略。近年来对模式植物拟南芥中多个木聚糖合成有缺陷的突变体的分析表明:GT43家族的IRX9、IRX9-L、IRX14、IRX14-L,GT47家族的FRA8、F8H、IRX10、IRX10-L,GT8家族的IRX8、PARVUS、QUA1、GUX1、GUX2等参与了木聚糖主链、还原末端序列和侧链的合成。本文主要对这些研究进展做一综述,并讨论了木聚糖合成的机制及亟待解决的问题,展望了其发展趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号