首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   32篇
  国内免费   48篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   12篇
  2018年   11篇
  2017年   12篇
  2016年   8篇
  2015年   12篇
  2014年   15篇
  2013年   12篇
  2012年   10篇
  2011年   7篇
  2010年   9篇
  2009年   11篇
  2008年   8篇
  2007年   12篇
  2006年   6篇
  2005年   10篇
  2004年   11篇
  2003年   12篇
  2002年   9篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1979年   1篇
排序方式: 共有293条查询结果,搜索用时 15 毫秒
21.
As part of a general risk assessment study weinvestigated the overwintering abilities ofTrichogramma brassicae Bezd. (Hym.: Trichogrammatidae) in Northern Switzerland. Eggs of six host species parasitized by T. brassicae were exposed under outdoor conditions every two weeksbetween 26 September and 7 November 1998. Wefound that T. brassicae is able tooverwinter successfully on six lepidopteranspecies in the families Tortricidae, Noctuidae,Plutellidae, Pyralidae and Crambidae. Between75 and 100% emergence was observed in thefollowing spring for all of the six tested hostspecies exposed on 26 September. On laterexposure dates, spring emergence decreasedsignificantly and no development of T. brassicae offspring occurred from host eggsparasitized on 7 November.Emergence of T. brassicae from eggs ofEphestia kuehniella Zeller parasitized atweekly intervals in autumn 1999 occurred in thesame year until the end of October if the eggswere parasitized by 10 September. All offspringfrom eggs that were parasitized from 17September onwards went into diapause. Springemergence of T. brassicae adults wasobserved between end of April and beginning ofMay both in 1999 and 2000. Fecundity of T.brassicae females that overwintered on E.kuehniella was not significantly different fromthe fecundity of control females that werereared without diapause under optimalconditions at 25 °C. Our resultsdemonstrate that the egg parasitoid T.brassicae is able to overwinter successfullyin Northern Switzerland and has the potentialto establish in Switzerland. As a result,potential non-target effects are not locallyrestricted but may occur on a largegeographical scale.  相似文献   
22.
Rearing temperature influences flavivirus vector competence of mosquitoes   总被引:2,自引:0,他引:2  
Culex annulirostris Skuse mosquitoes (Brisbane strain) were reared at 20 degrees C or 27 degrees C and the adult females were experimentally infected by feeding Murray Valley encephalitis virus (MVE). They were then maintained (a) in the insectary at 20 degrees C, after rearing at either 20 degrees C or 27 degrees C; (b) at ambient outdoor temperatures, range 12.2-28.9 degrees C, mean 19.6 degrees C; or (c) at 27 degrees C after rearing at 27 degrees C. There was no significant difference in rates of MVE infection or transmission when mosquitoes were reared and maintained constantly at 20 degrees C or 27 degrees C. However, for females kept at reduced temperature (i.e. mean = 19.6 degrees C or 20 degrees C after rearing at 27 degrees C), the infection and transmission rates of MVE were significantly reduced (2 x 8 replicates). This investigation illustrates that vector competence is depressed by decreasing temperatures for adult mosquitoes compared with those they experienced during development. Similar patterns were evident with previously published work on Japanese and St Louis encephalitis, dengue and yellow fever. The process appears to be reversible, i.e. increased temperature raises virus infection and transmission rates. It is concluded that, without incubation at warmer temperatures, flavivirus recovery from overwintering mosquitoes will be negatively biased.  相似文献   
23.
According to the author's and his collaborators' investigations, the climate influences the growth of rubber trees (Hevea brasiliensis) in Xishuangbanna, the southern part of Yunnan Province, China, in at least four aspects: (1) The yield of latex per tapping and the final yield of dry rubber per tree per year or per unit area per year; (2) the growth rate, as expressed by increment of girth in cm; (3) the survival during the over-wintering period; (4) the initiation or suppression of certain diseases; In this paper the author would like to describe the influence of climatic elements on yield of latex and on survival during the over-wintering period. As for the other two aspects, only general comments are given.  相似文献   
24.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   
25.
Potato tuber moth (PTM), Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) is an invasive insect pest damaging solanaceous crops. We measured the supercooling point (SCP) and survival at low temperature of different development stages to determine which would be capable of overwintering in the Korean climate and adapting to low temperatures. The SCP ranges from ?23.8°C of the egg to ?16.8 of fourth instar larvae (L4). After short periods of low temperature acclimation in L3 (third instar larva), L4 and prepupae, only the prepupal stage showed a significant lowered SCP from ?20.78 to ?22.37°C. When exposed to different subzero temperature for two hours the egg turned out to be the most cold tolerant stage showing LT50 of ?21.7°C followed by the pupal stage with ?15.89°C. One hundred percent mortality was observed when the larvae or adults were exposed to temperatures below ?15.1°C even for a period as short as 2 h. The results suggest that PTM pupae and egg would be the main overwintering stage in Korea where winter temperature does not drop below ?15°C.  相似文献   
26.
It is well known that spiders are present in high numbers in orchards and may contribute to biocontrol. Some recent studies in central Europe further showed that some spiders are active year-round and consume pests even in winter. Using cardboard traps laid every two weeks, we carried out a survey to determine which spider and earwig species are active from September to May in an experimental, pesticide-free, apple orchard under a Mediterranean climate. We observed that spider activity was never completely absent. The structure of the spider communities showed a marked seasonality in three periods (so-called ‘autumn’, ‘winter’ and ‘spring’). Only two spider genera, Philodromus and Trachelas, were highly active in winter (percentage of catches during this season above 40%) and six others (Lathys, Clubiona, Gnaphosa, Theridion, Phrurolithus) had moderate activity (between 20 and 40%). The two earwig species had different patterns of winter activity with Forficula auricularia almost absent whereas F. pubescens was moderately active on trees. Spider community abundance, diversity and evenness significantly decreased between autumn and winter and remained low in the following spring probably because the attractiveness of the traps is much lower at this time of year due to mild temperatures and the presence of leaves on the trees. Winter-active spiders could contribute to pest biocontrol during the cold season and we advocate that the use of broad-spectrum pesticides at the end of winter, as classically applied in orchards, may be counter-productive for pest control.  相似文献   
27.
Lilioceris cheni is a successful biological control agent on the invasive yam, Dioscorea bulbifera in many areas in Florida, Georgia, Alabama and Louisiana. Two biotypes are available for release and come from significantly different centres of origin. The Nepalese biotype was collected at higher altitude and latitude sites, whereas the Chinese biotype was collected at slightly lower latitude and lower altitude. We hypothesised that Nepalese beetles would survive winter better in north Florida and that Chinese beetles would overwinter better in subtropical south Florida. We established sites in Homestead, Fort Pierce, Gainesville and Tallahassee, Florida to gauge the overwintering survival of each biotype. Beetles that overwintered in each site for one to three seasons were collected and followed to assess their reproductive capacity. In the final year of the experiment, we extracted fat bodies to determine effects of biotype and site. Nepalese beetles overwintered significantly better overall. Beetles survived better in the first study year (2013–2014). Both biotypes reproduced very well after surviving winter and beetles in Fort Pierce survived better than beetles in other regions and maintained a higher fat body. Nepalese beetles may have a wider ecological envelope – a decided advantage for a large region such as peninsular Florida. We suggest that current release programmes incorporate Nepalese beetles into their protocol to increase overwinter survival and establishment.  相似文献   
28.
鄱阳湖越冬雁类食源植被适宜取食时间窗口   总被引:1,自引:1,他引:0  
雁类是长江中下游越冬水鸟的优势种群,以苔草(Carex spp)等湿生植被为主要食物来源。作为长江中下游仅存的通江湖泊之一,鄱阳湖显著受到水文波动的影响,湿地植被的生长发育与洲滩淹没和出露时间密切相关。雁类对食物资源具有高度的选择性,建立雁类取食植被的特征和苔草生长过程之间的关系,是刻画适宜栖息地时空分布范围,开展雁类及其食物资源保育的关键。选择鄱阳湖典型子湖泊常湖池作为研究区,对苔草春季生长期开展了原位观测试验,对4个高程梯度的苔草株高和生物量等关键生长因子进行了12次野外监测和采样。同时,结合遥感影像、气温数据及实地观测记录,确定了4个高程梯度洲滩的出露时间和苔草有效生长时间。在此基础上,建立了基于Logistic方程的苔草株高和生物量的生长过程曲线。并根据实地观测的雁类觅食苔草的特征,反推得到雁类适宜取食苔草的时间窗口。结果表明:苔草株高与地上生物量显著正相关,水文条件和气温是影响苔草生长的关键因素,而退水时间的推迟,会导致生长期缩短和低温限制下的有效生长时间减少,影响雁类食物资源的分布。苔草在秋季生长期出露达到12—28 d,而在春季生长期出露达到83—182 d时适宜雁类取食。研究提出了确定越冬雁类苔草适宜取食时间窗口的方法,证实洲滩退水时间推迟超过20 d,苔草生长节律将难以匹配雁类数量峰值期觅食的需要。本研究对鄱阳湖湿地水文调控和湿地资源管理具有重要意义。  相似文献   
29.
Population limitation models of migratory birds have sought to include impacts from events across the full annual cycle. Previous work has shown that events occurring in winter result in some individuals transitioning to the breeding grounds earlier or in better physical condition than others, thereby affecting reproductive success (carry‐over effects). However, evidence for carry‐over effects from breeding to wintering grounds has been shown less often. We used feather corticosterone (CORTf) levels of the migratory Louisiana Waterthrush Parkesia motacilla as a measure of the physiological state of birds at the time of moult on the breeding territory to investigate whether carry‐over effects provide linkages across the annual cycle of this stream‐obligate bird. We show that birds arriving on wintering grounds with lower CORTf scores, indicating reduced energetic challenges or stressors at the time of moult, occupied higher quality territories, and that these birds then achieved a better body condition during the overwinter period. Body condition, in turn, was important in determining whether adult birds returned the following winter, with birds in better condition returning at higher rates. Together these data suggest a carry‐over effect from the breeding grounds to the wintering grounds that is further extended with respect to annual return rates. Very few other studies have linked conditions during the previous breeding season with latent effects during the subsequent overwintering period or with annual survival. This study shows that the effects of variation in energetic challenges or stressors can potentially carry over from the natal stream and accumulate over more than one life‐history period before being manifested in reduced survival. This is of particular relevance to models of population limitation in migratory birds.  相似文献   
30.
Arctic microalgae experience long periods of continuous darkness during the polar night, when they are unable to photosynthesize. Despite numerous studies on overwintering strategies, such as utilization of stored energy products, formation of resting stages, reduction of metabolic rates and heterotrophic lifestyles, there have been few attempts to assess the in situ physiological state and restoration of the photosynthetic apparatus upon re‐illumination. In this study, we found diverse and active marine phytoplankton communities during the polar night at 78°N. Furthermore, we observed rapid changes (≤20 min) in the efficiency of photosynthetic electron transport upon re‐illumination. High photosynthetic capacity and net primary production were established after 24 h of re‐illumination. Our results suggest that some Arctic autotrophs maintain fully functional photosystem II and downstream electron acceptors during the polar night even though the low in situ net primary production levels measured in January prove that light was not sufficient to support any measurable primary production. Due to low temperatures resulting in low respiratory rates as well as the absence of photodamage during the polar night, maintenance of basic photosynthetic machinery may actually pose relatively low metabolic costs for algal cells. This could allow Arctic microalgae to endure the polar night without the formation of dormant stages, enabling them to recover and take advantage of light immediately upon the suns return during the winter–spring transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号