首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   63篇
  国内免费   168篇
  2023年   11篇
  2022年   13篇
  2021年   18篇
  2020年   18篇
  2019年   22篇
  2018年   21篇
  2017年   22篇
  2016年   20篇
  2015年   24篇
  2014年   21篇
  2013年   20篇
  2012年   10篇
  2011年   14篇
  2010年   12篇
  2009年   17篇
  2008年   16篇
  2007年   17篇
  2006年   19篇
  2005年   17篇
  2004年   9篇
  2003年   13篇
  2002年   10篇
  2001年   11篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   8篇
  1995年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
排序方式: 共有420条查询结果,搜索用时 31 毫秒
21.
基于NOAA PAL数据集的地表蒸散遥感估算方法   总被引:1,自引:0,他引:1  
基于NOAA AVHRR气象卫星长时间序列10 d合成的PAL数据集(分辨率8 km×8 km)以及地表能量平衡原理和“VI-Ts”方法,建立了地表蒸散的遥感估算方法,该方法不需要地面气象观测数据的支持,所需参数可直接从遥感数据反演或推算,并选择国际上著名的遥感蒸散模型——SEBS模型对新建模型进行了验证比较.结果表明:新建模型和SEBS模型模拟的地表蒸散值及其季节性变化趋势非常一致,说明新构建模型的模拟结果比较可靠,能够反映地表蒸散的实际情况.新建地表蒸散遥感估算模型可操作性强,为利用长时间序列的卫星遥感数据研究我国乃至全球地表蒸散的时空变化规律提供了一个新的途径.  相似文献   
22.
Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade‐off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one‐way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area‐based LNC. Mass‐based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade‐off between traits associated with growth and resource conservation ‘strategies’ in relation to soil fertility. Precipitation but not temperature affected this trade‐off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate.  相似文献   
23.
Accumulation of heavy metals (HMs) in cultivated soils is a continuing environmental problem in many parts of the world. An increase in HM concentration can enhance uptake of toxic metals by crops and enter the human food chain. In this study, the uptake behavior of wheat and safflower was evaluated in a calcareous soil by using 12 undisturbed columns in which half were artificially contaminated. Heavy metals in the form of CdCl2 (15 mg Cd kg? 1), CuSO4 (585 mg Cu kg? 1), Pb(NO3)2 (117 mg Pb kg? 1), and ZnCl2 (1094 mg Zn kg? 1) were sprayed on the soil surface and completely mixed in the top 10 cm. The background total concentrations of Cd, Cu, Pb and Zn were 1.6, 29.5, 17.5 and 61.2 mg kg? 1, respectively. After metal application, half of the columns (3 contaminated and 3 uncontaminated) were sown with wheat (Triticum aestivum) and the other half with safflower (Carthamus tinctorious) and grown for 74 days until maturity. After harvesting, soil columns were cut into 10-cm sections and analyzed for HNO3- and DTPA-extractable metal concentrations. Metal concentrations were also measured in different plant tissues. The results showed that artificial contamination of topsoil decreased the transpiration rate of wheat by 12% and that of safflower by 6%. In contaminated columns, Cd, Cu, Pb, and Zn accumulation in wheat shoot was greater by 8.0-, 1.9-, 3.0-, and 2.1-fold than the control, respectively. Accordingly, these numbers were 46.0-, 1.3-, 1.7-, and 1.6-fold in safflower shoot. Soil contamination with HMs resulted in a 55% decrease in shoot dry matter yield of wheat while it had no significant effect on shoot dry matter of safflower. The normalized water consumption for safflower was therefore not affected by metal contamination (≈ 13 mm H2O g? 1 of dry weight for all safflower and uncontaminated wheat treatments), while contaminated wheat was much less water efficient at about 27 mm H2O g? 1 dry weight. It was concluded that although artificial contamination had a negative effect on wheat growth, it did not affect safflower's normal growth and water efficiency.  相似文献   
24.
蒸散发是水文能量循环和气候系统的关键要素。研究蒸散发的时空变化特征及其响应气候、土地利用的变化规律,对理解城市流域水循环和生态过程效应具有重要意义。本研究基于三温模型和MODIS影像,估算并分析2001—2018年南宁市的蒸散量时空演变特征,并探讨了主要气候要素、土地利用类型对蒸散量的影响规律和驱动模式。结果表明: 2001—2018年,南宁市年均蒸散量在495.7~781.1 mm,年际相对变化率为-22.5%~23.1%,整体呈上升趋势;区域蒸散量呈南北高、中间低的分布格局,市区蒸散量显著低于郊区。南宁市蒸散量与气候因子呈显著的复相关性,气温对蒸散量的影响大于降水,在郊区呈气温驱动型,而市区则存在多种驱动类型复合现象。南宁市各土地利用类型的平均蒸散量大小依次为:林地(823.4 mm)>草地(675.6 mm)>耕地(582.9 mm)>建设用地(346.6 mm)。土地利用类型的转变是导致区域蒸散量发生显著变化的主要下垫面因素。  相似文献   
25.
温带森林生态系统水热通量在多时间尺度上受各种生物物理因子的影响。该研究假设这些因子对水热通量的影响机制具有时间尺度分异性, 通过涡度相关法(EC)于2019年全年对北京松山典型天然落叶阔叶林生态系统蒸散发(ET)、显热通量(H)、潜热通量(LE)、土壤热通量(G)、饱和水汽压差(VPD)、空气温度(Ta)、光合有效辐射(PAR)、归一化植被指数(NDVI)及10 cm深度土壤水分(VWC)等要素进行原位连续监测, 使用小波分析的方法分析了日、季节尺度上生物与非生物因子对生态系统能量分配与水汽交换的调控机制。主要研究结果: 2019年松山天然落叶阔叶林生态系统年均波文比(β)为1.53。ET具有明显的季节变化特征, 从第100天开始逐渐增加, 7月达到峰值, 第300天下降到最低水平。ET最大日累计值为5.01 mm·d-1, 年累计值为476.2 mm, 年降水量为503.3 mm。在日尺度上水热通量与VPD间滞后时间最短, 为3.36 h。在季节尺度上与PAR间滞后时间最短, 为8天。季节尺度上PAR通过VPD来对ET造成间接影响, 而对β造成直接影响。该研究发现不同时间尺度上水热通量与环境因子间的时滞关系, 为选择模型在不同时间尺度下北方温带落叶阔叶林生态系统过程的最佳输入参数提供科学支持。  相似文献   
26.
黄土高原水蚀风蚀交错区三种植被蒸散特征   总被引:2,自引:1,他引:1  
王幼奇  樊军  邵明安  王全九 《生态学报》2009,29(10):5386-5394
利用称重式蒸渗仪结合Penman-Monteith公式研究了黄土高原水蚀风蚀交错区苜蓿、柠条和茵陈蒿3种植被不同时间尺度的蒸散特征,分析了植被株高、盖度和降水等因子对蒸散的影响并确定了作物系数(KC).结果表明:Logistic三参数模型可以较好拟合3种植被株高、盖度随时间的变化情况并确定了模型的参数.3种植被逐日蒸散变化受降水量的影响波动明显,反映了土壤水分状况控制条件下的蒸散过程.其月蒸散量的季节性差异均不明显,研究时段内总耗水量分别为苜蓿316 8mm、柠条317.7mm、茵陈蒿361.9mm,均高于同期降水量.苜蓿和茵陈蒿初期、中期和后期的KC分别为0.48、0.54、0.42和0.58、0.67、0.62,柠条初期和中期的KC为0 45、0.57,均高于当地典型农作物谷子的KC.  相似文献   
27.
The hydrologic cycle in Slovakia is determined mainly by three basic components: precipitation (P), evapotranspiration (E) and runoff (R). The mean annual P total was 747 mm, E sum 476 mm and the mean R was 271 mm in Slovakia in 1951–1980 (E ≈ 0.65P and R ≈ 0.35P). T increase in 1.6°C and annual P decrease in 24 mm (3.1%) were detected in the 1881–2007 period. Regimes of potential and actual evapotranspiration, soil moisture and R have been changed mainly in the southern Slovakia. A physical model for the estimation of the energy balance equation components (total radiation balance and its components, potential and actual evapotranspiration, sensible heat flux) has been developed. Input data are the air temperature and humidity, cloudiness, the number of days with snow cover and precipitation, all measured in the network of 31 meteorological stations in Slovakia since 1951. The 20-year period 1988–2007 was by 0.9°C warmer than the normal period mean. The observed increase is at the upper limit of all climate change scenarios projected for Slovakia in 1991–2001. Annual P totals have not changed significantly, but substantial changes have been found in the P regime. The scenarios show significant changes in the hydrological cycle not only at river basins balance but also in case of soil water balance, mainly in the southern Slovakia.  相似文献   
28.
Aim To implement plant hydraulic architecture within the Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ–DGVM), and to test the model against a set of observational data. If the model can reproduce major patterns in vegetation and ecosystem processes, we consider this to be an important linkage between plant physiology and larger‐scale ecosystem dynamics. Location The location is global, geographically distributed. Methods A literature review was carried out to derive model formulations and parameter values for representing the hydraulic characteristics of major global plant functional types (PFTs) in a DGVM. After implementing the corresponding formulations within the LPJ–DGVM, present‐day model output was compared to observational data. Results The model reproduced observed broad‐scale patterns in potential natural vegetation, but it failed to distinguish accurately between different types of grassland and savanna vegetation, possibly related to inadequate model representations of water fluxes in the soil and wildfire effects. Compared to a version of the model using an empirical formulation for calculating plant water supply without considering plant hydraulic architecture, the new formulation improved simulated patterns of vegetation in particular for dry shrublands. Global‐scale simulation results for runoff and actual evapotranspiration (AET) corresponded well to available data. The model also successfully reproduced the magnitude and seasonal cycle of AET for most EUROFLUX forests, while modelled variation in NPP across a large number of sites spanning several biomes showed a strong correlation with estimates from field measurements. Main conclusions The model was generally confirmed by comparison to observational data. The novel model representation of water flow within plants makes it possible to resolve mechanistically the effects of hydraulic differences between plant functional groups on vegetation structure, water cycling, and competition. This may be an advantage when predicting ecosystem responses to nonextant climates, in particular in areas dominated by dry shrubland vegetation.  相似文献   
29.
Li J  Liu Y F  Yang X G  Li J 《农业工程》2006,26(8):2449-2456
Water-vapor flux over a planted coniferous forest ecosystem near Qianyanzhou, Jiangxi Province, China, was continuously measured with the eddy covariance technique for 2004. How environmental variables, including net radiation, air temperature, and soil moisture, affected water-vapor flux variation was studied in detail. Results showed that winter had the lowest monthly water-vapor flux value, whereas summer had the highest. The diurnal variation of water-vapor flux showed different patterns for clear and cloudy days. The annual total evapotranspiration was 736.1 mm. Regression analysis showed that daily water-vapor flux was significantly correlated with net radiation, air temperature, soil temperature, and soil heat flux on both clear and cloudy days, all in quadratic relationships. Stepwise regression analysis demonstrated that a different set of environmental factors controlled water-vapor flux on days with different weather conditions. From this study, it was clear that these environmental variables, especially net radiation and soil temperature, regulated water-vapor flux over the planted coniferous ecosystem.  相似文献   
30.
We combined Eddy‐covariance measurements with a linear perturbation analysis to isolate the relative contribution of physical and biological drivers on evapotranspiration (ET) in three ecosystems representing two end‐members and an intermediate stage of a successional gradient in the southeastern US (SE). The study ecosystems, an abandoned agricultural field [old field (OF)], an early successional planted pine forest (PP), and a late‐successional hardwood forest (HW), exhibited differential sensitivity to the wide range of climatic and hydrologic conditions encountered over the 4‐year measurement period, which included mild and severe droughts and an ice storm. ET and modeled transpiration differed by as much as 190 and 270 mm yr?1, respectively, between years for a given ecosystem. Soil water supply, rather than atmospheric demand, was the principal external driver of interannual ET differences. ET at OF was sensitive to climatic variability, and results showed that decreased leaf area index (L) under mild and severe drought conditions reduced growing season (GS) ET (ETGS) by ca. 80 mm compared with a year with normal precipitation. Under wet conditions, higher intrinsic stomatal conductance (gs) increased ETGS by 50 mm. ET at PP was generally larger than the other ecosystems and was highly sensitive to climate; a 50 mm decrease in ETGS due to the loss of L from an ice storm equaled the increase in ET from high precipitation during a wet year. In contrast, ET at HW was relatively insensitive to climatic variability. Results suggest that recent management trends toward increasing the land‐cover area of PP‐type ecosystems in the SE may increase the sensitivity of ET to climatic variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号