首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1518篇
  免费   181篇
  国内免费   656篇
  2024年   11篇
  2023年   61篇
  2022年   58篇
  2021年   80篇
  2020年   68篇
  2019年   53篇
  2018年   49篇
  2017年   42篇
  2016年   67篇
  2015年   80篇
  2014年   170篇
  2013年   68篇
  2012年   103篇
  2011年   121篇
  2010年   84篇
  2009年   112篇
  2008年   141篇
  2007年   90篇
  2006年   63篇
  2005年   76篇
  2004年   70篇
  2003年   56篇
  2002年   66篇
  2001年   64篇
  2000年   65篇
  1999年   37篇
  1998年   25篇
  1997年   37篇
  1996年   36篇
  1995年   35篇
  1994年   35篇
  1993年   37篇
  1992年   36篇
  1991年   39篇
  1990年   27篇
  1989年   40篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   18篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1950年   1篇
排序方式: 共有2355条查询结果,搜索用时 15 毫秒
101.
目的:预处理对木质纤维素降解的影响.方法:从土壤中分离筛选到高纤维素酶活的黏细菌菌株So ce sh1008.该菌具有CMC酶活(CMCase)及微晶纤维素酶活性.研究NaOH联合黏细菌降解盐蒿、稻草、棉花秸秆和甘蔗渣四种木质纤维素的情况.结果:碱(2% NaOH) -黏细菌处理的方法优于黏细菌-碱的方法,其中降解棉花秸秆降解效果最明显,以5.0g木质纤维素为原料,其最终干重损失达2.1g,溶液中总糖含量和还原糖含量均值分别为12.8 mg/mL和0.93 mg/mL.酵母菌发酵产乙醇的研究结果表明,最佳发酵时间为47h,碱-黏细菌甘蔗渣降解液发酵效果最好,乙醇产出达6.0%.结论:黏细菌联合2% NaOH能有效降解甘蔗渣,提高乙醇产量.  相似文献   
102.
从几种复合微生物有机肥中分离出一系列不同的菌株,与实验室保存的菌株GNW(自生固氮菌)和HP2(解磷菌)混合接种培养,检测是否因基因杂交、突变等原因而产生具有抑菌作用的菌株.结果分离出一株具有抑菌作用的放线菌菌株GNF1,根据其形态学特征、生理生化特征和基于16S rRNA基因序列的系统发育分析结果,鉴定其属于链霉菌属(Streptomyces)的一个菌株,GNF1菌株的代谢产物中存在具有抑菌作用的活性成分,与植物根际促生菌GNW、HP2以及某些原核病原微生物共培养培养时能明显抑制它们的生长.  相似文献   
103.
更正     
本刊2010年第6期刊登的贺军军、罗萍等文章"菠萝渣淀粉功能降解菌筛选及s2b7-4"及2011年第1期刊登的贺军军、罗萍等文章"甘蔗渣纤维素降解菌的筛选及鉴定",应作者本人要求,文中作者单位排序修改为"1.中国热带农业科学院湛江实验站;2.中国热带农业科学院环境与植物保护研究所;  相似文献   
104.
中间纤维蛋白巢蛋白(nestin)在各种胚胎前体细胞及成熟组织中均有表达.近年一些研究显示,巢蛋白的表达上调和一些恶性肿瘤的病理特征有相关性.但是,巢蛋白在干细胞分化及肿瘤发生中的作用还不为人知.在本研究中,我们运用短发卡状的RNA为工具,以大鼠神经胶质瘤细胞系C6为模型,对巢蛋白的功能进行了研究.划痕实验和迁移实验的结果均显示,巢蛋白基因沉默可以促进C6细胞的迁移.同时,BrdU渗入实验显示,此过程伴随着细胞增殖的增加.进一步研究显示,细胞周期依赖性激酶cdk5的活性在此过程中有显著的增加.此外,巢蛋白基因沉默所引起的迁移改变可以被cdk5特异性抑制剂roscovitine所回复, 而对细胞增殖则没有显著影响.综上所述,本研究揭示了巢蛋白基因沉默与神经胶质瘤细胞的迁移和增殖相关,而cdk5是此过程的重要调节因子.  相似文献   
105.
106.
对真空软包装肉制品腐败变质原因分析表明:生物性因素是主要原因之一,污染微生物是乳酸球菌和芽胞杆菌;变质产品中的微生物数量及因此造成的酸化,不足以单方面造成产品变质,与产品含水量有关,是生物因素与非生物因素联合作用导致产品液化胀袋而变质;乳酸球菌由污染的冻结肉携带,而污染的芽胞杆菌是生产器具消毒不彻底造成的。  相似文献   
107.
摘要:【目的】木质纤维素是地球上最丰富的可再生资源,筛选具有高抗逆和高效利用木糖能力的菌株对纤维素类可再生资源综合利用具有重大意义。【方法】论文以5株利用木糖的酵母,即树干毕赤酵母(Scheffersomyces stipitis,S.stipitis)、Candida tenuis (C.tenuis)、Spathaspora passalidarum (S.passalidarum)、Candida amazonensis(C. amazonensis)和Candida jeffriesii(C. jeffriesii)为研究对象,研究了其对温度、乙醇浓度、渗透压的耐受性,采用杜氏小管实验研究了其对常用碳源和氮源的利用能力,另外通过木糖发酵实验初步研究了被测试酵母在有氧和限氧条件下的木糖发酵性能。【结果】结果表明,S. passalidarum能够耐受44 ℃左右的高温,对多种碳源和氮源具有较强的利用能力,此外,S. passalidarum在有氧与限氧条件下均能快速代谢木糖,限氧条件下乙醇得率达0.43 g/g。C. amazonensis对纤维二糖具有较强发酵能力,代谢木糖产生木糖醇和少量乙醇,同时该酵母耐受温度在42 ℃左右。综合比较,其他酵母在实验过程中没有表现出明显优势。【结论】S. passalidarum 在纤维素工业化应用中是一株良好的生产候选菌株。此外,C. amazonensis具有较强的木糖醇生产能力,有望成为一株优良的木糖醇生产菌株。  相似文献   
108.
微生物共培养技术的研究进展   总被引:2,自引:0,他引:2  
摘要:本文对微生物共培养的发展历史及其在食品、农业、工业及污水净化等方面的应用进行了综述,并对已知的共培养微生物之间的生态学关系进行了总结。人们利用微生物联合共培养、序列共培养和共固定化细胞混菌培养等技术来获得新的代谢产物,提高产量,改造传统发酵工业,生产能源物质,提高底物利用率,扩大底物范围,降解有毒物质。共培养微生物之间可能具有协同代谢作用、诱导作用、种间群体感应、基因转移等多种生态学关系。对共培养微生物之间的微生态机理进行深入系统的研究,有助于充分发挥共培养技术的应用潜力。  相似文献   
109.
陈杏娟  郭俊  许玫英 《微生物学报》2011,51(9):1146-1151
零价铁(Fe0)具有高效还原转化多种污染物的能力,但不能实现污染物的矿化作用。微生物与Fe0的协同作用过程,以微生物为主导,Fe0起促进作用,可有效提高多种污染物的降解效率,实现污染物的彻底脱毒与无害化,因此利用微生物协同Fe0氧化进行环境修复具有广阔的应用前景。本文从微生物协同Fe0氧化的作用机理、菌种多样性及其在环境修复中的应用等研究进展进行综述,提出微生物协同Fe0氧化的环境修复研究中存在的主要问题和重点研究方向,以期在更全面、深入地认识这一过程的基础上,充分发挥其在环境修复中的作用。  相似文献   
110.
张文静  马诗淳  邓宇  张辉 《微生物学报》2011,51(11):1510-1519
【目的】分离高效降解木糖的嗜热厌氧杆菌菌株,用于发酵生产生物燃料乙醇,为后继的构建基因工程菌株及联合生物工艺提供材料。【方法】运用亨盖特厌氧操作技术从胜利油田油层采出液两年的富集样中分离到一株嗜热厌氧杆菌xyl-d。采用形态学观察、生理生化指标鉴定及基于16S rRNA的系统发育学分析确定其分类地位。【结果】菌株xyl-d为革兰氏阴性厌氧杆菌,菌体大小为(1.35-5.08)μm×(0.27-0.40)μm,单生、成对或成簇生长,芽胞圆形,端生。温度生长范围30-85℃(最适温度65℃);pH范围3.0-10.0(最适pH 7.5);NaCl浓度范围0%-4%(最适NaCl浓度2.0%)。发酵D-木糖的产物是乙醇、乙酸、CO2及少量的异丁醇、丙酸。菌株xyl-d的(G+C)mol%含量为45.6%,与热厌氧杆菌属模式菌株威吉利热厌氧杆菌(Thermoanaerobacter wiegelii)DSM10319T及嗜热乙醇杆菌(Thermoanaerobacter ethanolicus)DSM2246T的16S rRNA序列相似性均为99.3%。菌株利用D-木糖产乙醇的最佳初始pH为8.5;少量酵母粉能刺激生长并显著提高发酵D-木糖的产醇率,使乙醇成为主要的发酵产物;培养基中乙醇浓度达到7%(V/V)时菌体生长受到抑制,最佳生长条件下D-木糖的降解率可达91.37%,最佳产醇条件下发酵1摩尔D-木糖可产生1.29摩尔的乙醇。【结论】菌株xyl-d是从特殊生境(油藏)中分离到的一株高效降解D-木糖的耐酸、嗜热的厌氧杆菌,其为半纤维素降解产乙醇的联合生物工艺提供了菌源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号