首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  2014年   1篇
  2013年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有20条查询结果,搜索用时 171 毫秒
11.
To study the role of olfactory cilia on olfactory reception, the carp olfactory cilia were removed by modified "ethanol-calcium shock" and the bulbar responses were recorded before and after deciliation. Large olfactory responses to various amino acids were observed after complete deciliation. The relation between magnitude of olfactory response and alanine concentration before and after deciliation was essentially unchanged. The present results suggests that the olfactory cilia may not be necessary for receptor neuron function in the carp.  相似文献   
12.
Despite the expression of voltage-dependent Ca2+ channels in nasal turbinate epithelium, their role in odorant chemosensation has remained obscure. Therefore, we investigated olfactory neurotransduction in beta3-deficient mice. RT-PCR and Western blots confirmed the expression of various types of Ca2+ channels in the nasal turbinate. Electrophysiological evaluations revealed that beta3-null mice had a 60% reduction in the high-voltage-dependent Ca2+ currents in olfactory receptor neurons due to reduced N- and L-type channel currents. The beta3-null mice showed increased olfactory neuronal activity to triethylamine, and this effect was mimicked by the perfusion of the specific N-type Ca2+ channel inhibitor omega-conotoxin GVIA in the electro-olfactogram. Diluted male urine odors induced higher Fos immunoreactivity in the main olfactory bulbs of beta3-deficient mice, indicating enhanced signal transduction of odor information in these mice. Our data indicate the involvement of voltage-dependent Ca2+ channels and importance of the beta3 subunit in olfactory signal transduction.  相似文献   
13.
In olfactory receptor cells, it is well established that cyclic AMP (cAMP) and inositol-1,4,5-trisphosphate (IP(3)) act as second messengers during odor responses. In previous studies, we have shown that cAMP-increasing odorants induce odor responses even after complete desensitization of the cAMP-mediated pathway. These results suggest that at least one cAMP-independent pathway contributes to the generation of odor responses. In an attempt to identify a novel second messenger, we investigated the possible role of cyclic ADP-ribose (cADPR) in olfactory transduction. Turtle olfactory receptor cells were isolated using an enzyme-free procedure and loaded with fura-2/AM. The cells responded to dialysis with cADPR with an inward current and an increase of the intracellular Ca(2+) concentration, [Ca(2+)](i). Flooding of cells with 100 microM cADPR from the pipette also induced an inward current without changes in [Ca(2+)](i) in Na(+)-containing and Ca(2+)-free Ringer solution. In an Na(+)-free and Ca(2+)-containing Ringer solution, cADPR induced only a small inward current with a concomitant increase in [Ca(2+)](i). Inward currents and increases in [Ca(2+)](i) induced by cADPR were completely inhibited by removal of both Na(+) and Ca(2+) from the outer solution. The experiments suggest that cADPR activates a cation channel at the plasma membrane, allowing inflow of Na(+) and Ca(2+) ions. The magnitudes of the inward current responses to cAMP-increasing odorants were greatly reduced by prior dialyses of a high concentration of cADPR or 8-bromo-cyclic ADP-ribose (8-Br-cADPR), an antagonist. It is possible that the cADPR-dependent pathway contributes to the generation of olfactory responses.  相似文献   
14.
Using the whole-cell mode of the patch-clamp technique, we attempted to record inward currents in response to cAMP, inositol 1,4, 5-trisphosphate (IP(3)) and odorants from sensory neurons in the olfactory epithelium of the Xenopus laevis lateral diverticulum (water nose). Dialysis of 100 microM of IP(3) induced inward currents, while dialysis of 1 mM of cAMP into olfactory neurons did not induce any response under the voltage-clamp conditions. Changes in membrane conductance were examined by applying ramp pulses. The slope of the current-voltage (I-V) curve during the IP(3)-induced response was steeper than that after the response, indicating that IP(3) increased the membrane conductance. The water nose olfactory neurons have been shown to respond to both amino acids and volatile odorants. The slopes of I-V curves during responses to amino acids and a volatile odorant, lilial, were similar to those before the responses, suggesting that the total membrane conductance was not changed during responses to amino acids and the volatile odorant.  相似文献   
15.
16.
A suspension of olfactory epithelial cells was prepared from porcine olfactory mucosa and the physiological functions of the suspension were examined. The membrane potential of the cell suspension, which was monitored by measuring the fluorescence changes of rhodamine 6G, was depolarized by an increase in the K+ concentration in the external medium. Various odorants depolarized the cell suspension in a dose-dependent fashion. The magnitude of depolarization by odorants was either unchanged or slightly increased by a reduction of the concentration of Na+, Ca2+, and Cl- in the external medium, which suggests that changes in the permeabilities of specific ions are not involved in depolarization by odorants. The application of various odorants to the cell suspension induced changes in the membrane fluidity at different sites of the membrane that were monitored with various fluorescent dyes [8-anilino-1-naphthalene sulfonate, n-(9-anthroyloxy) stearic acids, 12-(9-anthroyloxy) oleic acid, and (1,6-diphenyl-1,3,5-hexatriene)], which suggests that the odorants having different odors are adsorbed on different sites in the membrane. On the basis of these results, a possible mechanism of odor discrimination is discussed.  相似文献   
17.
Using the whole-cell mode of the patch-clamp technique, we recorded action potentials, voltage-activated cationic currents, and inward currents in response to water-soluble and volatile odorants from receptor neurons in the lateral diverticulum (water nose) of the olfactory sensory epithelium of Xenopus laevis. The resting membrane potential was -46.5 +/- 1.2 mV (mean +/- SEM, n = 68), and a current injection of 1-3 pA induced overshooting action potentials. Under voltage-clamp conditions, a voltage-dependent Na+ inward current, a sustained outward K+ current, and a Ca2+-activated K+ current were identified. Application of an amino acid cocktail induced inward currents in 32 of 238 olfactory neurons in the lateral diverticulum under voltage-clamp conditions. Application of volatile odorant cocktails also induced current responses in 23 of 238 olfactory neurons. These results suggest that the olfactory neurons respond to both water-soluble and volatile odorants. The application of alanine or arginine induced inward currents in a dose-dependent manner. More than 50% of the single olfactory neurons responded to multiple types of amino acids, including acidic, neutral, and basic amino acids applied at 100 microM or 1 mM. These results suggest that olfactory neurons in the lateral diverticulum have receptors for amino acids and volatile odorants.  相似文献   
18.
19.
To elucidate the signal transduction mechanisms in the turtlevomeronasal receptor neurons, the effects of forskolin, changesin mucosal Ca2+ concentrations and ruthenium red on the responsesof the accessory olfactory bulb to general odorants were examined.Forskolin elicited a large response, suggesting that there arecAMP-gated channels in the vomeronasal neurons. On the otherhand, the dependence of the responses to general odorants onCa2+ concentrations was different from that of the responseto forskolin. A large response to an odorant (n-amyl acetate)appeared after the cAMP-mediated pathway was fully desensitizedby application of 50 µM forskolin. These results suggestthat the cAMP-mediated pathway does not contribute significantlyto generation of the response to general odorants. A concentrationof 50 µM ruthenium red significantly reduced the responsesto n-amyl acetate alone and after 50 µM forskolin desensitization,suggesting that the inositol triphosphate-mediated pathway contributespartly to generation of the responses to general odorants inthe vomeronasal neurons. Chem Senses 21: 763–771, 1996.  相似文献   
20.
1. Dependence of the fron olfactory bulbar responses on NaCl concentration greatly varied from odorant to odorant. The responses to odorants such as 1-carvone and isoamyl acetate were essentially unchanged by removal of NaCl, while those to odorant such as citral and beta-ionone were greatly decreased by removal of NaCl. 2. The NaCl requirement for the responses to certain odorants was greatly decreased by an increase in pH or temperature of the stimulating solution. 3. It was concluded that changes in ion permeability at the apical membranes of olfactory cells including olfactory ciliary membranes are not involved in generation of the in vivo olfactory responses to certain odorants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号