首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   10篇
  国内免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   1篇
  2012年   10篇
  2011年   10篇
  2010年   6篇
  2009年   18篇
  2008年   24篇
  2007年   22篇
  2006年   11篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   13篇
  1998年   5篇
  1997年   3篇
  1996年   12篇
  1995年   9篇
  1994年   17篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   12篇
  1989年   11篇
  1988年   8篇
  1987年   6篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   6篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有314条查询结果,搜索用时 187 毫秒
11.
近亲繁殖回避现象是人类学者、生物学者、心理学者和社会学者最关心的研究课题之一。针对灵长类的社会特点和近亲繁殖回避假说,本文引入了三个主要假设:假设1)近亲繁殖可能会导致个体繁殖适合度降低等损失;假设2)近亲繁殖有利有弊,但是弊端可能明显大于利益;假设3)如果弊大于利,那么动物应该进化形成回避近亲繁殖的机制,以减少该行为产生的损失。然后,本文综述分析了6科19个灵长类种群的现有繁殖数据,验证了灵长类的行为回避、迁移和繁殖抑制等机制,旨在强调灵长类回避近亲繁殖的必要性及其生物学背景,并为人类学、生物学和心理学的相关研究提供跨学科素材。  相似文献   
12.
In previous studies, we have investigated the strength of self-incompatibility (SI) in Solanum carolinense, a highly successful weed with a fully functional SI system that inhabits early successional and other disturbed habitats. We have found that the SI response in S. carolinense is a plastic trait—its strength being affected by the age of the flowers, and the presence of developing fruits and that there are genetic differences among families in their self-fertility. However, in species with a fully functional SI response, selfing would not be that common. As a result, deleterious recessives scattered though the genome of horsenettle are only occasionally exposed to selection. It has been suggested that deleterious recessives accumulate near S-alleles in strong SI species because the S-locus is located in a non-recombining region of the genome and because strong S-alleles are never in the homozygous state, thus sheltering some of the genetic load near the S-locus from selection. We performed a series of laboratory and greenhouse experiments to determine the extent to which sheltered load adds to the overall magnitude of inbreeding depression in horsenettle. Specifically, we amplified and sequenced the S-alleles from 16 genets collected from a large population in Pennsylvania and performed a series of controlled self-pollinations. We then grew the selfed progeny in the greenhouse; recorded various measures of growth and reproductive output; and amplified and sequenced their S-allele(s). We found that the heterozygous progeny of self-pollinations produce more flowers and have a greater ability to set both self and cross seed than S-homozygous progeny. We also found evidence of variation in the magnitude of load among S-alleles. These results suggest that sheltered load might slow the fixation of weak (partially compatible) S-alleles in this population, thus adding to the maintenance of a mixed mating system rather than leading to the fixation of the selfing alleles.  相似文献   
13.
In random mating populations, the fate of mitochondrial mutations with sexually antagonistic effects in males and females is based solely on their effects in females. Therefore, mitochondrial mutations that are beneficial for females but deleterious for males will be fixed in a deterministic model. Why then are males not less fertile? One among many several explanations is that inbreeding limits the ability of mutants to spread since the fitness of a mother is now linked to her son's fertility. We model this situation analytically and determine conditions under which such sexually antagonistic mitochondrial mutants can spread and fix in a population. We also provide alternative hypotheses for the lack of observed male sterility in natural populations.  相似文献   
14.
How many generations ago did the common ancestor of all present-day individuals live, and how does inbreeding affect this estimate? The number of ancestors within family trees determines the timing of the most recent common ancestor of humanity. However, mating is often non-random and inbreeding is ubiquitous in natural populations. Rates of pedigree growth are found for multiple types of inbreeding. This data is then combined with models of global population structure to estimate biparental coalescence times. When pedigrees for regular systems of mating are constructed, the growth rates of inbred populations contain Fibonacci n-step constants. The timing of the most recent common ancestor depends on global population structure, the mean rate of pedigree growth, mean fitness, and current population size. Inbreeding reduces the number of ancestors in a pedigree, pushing back global common ancestry times. These results are consistent with the remarkable findings of previous studies: all humanity shares common ancestry in the recent past.  相似文献   
15.
Salmon have provided key insights into the relative influence of natural and sexual selection on major histocompatibility complex (MHC) variation. Natural selection on salmon MHC genes has been demonstrated in pathogen studies, and there is evidence of MHC-based mate choice (sexual selection). We tested whether parental MHC genes affect survivorship of juvenile Atlantic salmon (Salmo salar) by quantifying the influence of parental genome-wide relatedness and MHC genotype on survivorship to the swim-up stage. Thirteen microsatellite loci were used to estimate the influence of genome-wide relatedness between parents on offspring survivorship and MHC genotypes were determined by sequencing part of the class IIβ gene. Our results revealed no significant relationship between early offspring survivorship and genome-wide relatedness, predicted MHC heterozygosity, or MHC allelic similarity. Overall, our data are consistent with the contention that excess MHC heterozygosity in Atlantic salmon juveniles is due to sexual selection as well as differential survival of offspring due to MHC genotype.  相似文献   
16.
Mechanisms for inbreeding avoidance should be prevalent in insects that reproduce by arrhenotokous haplodiploidy because of the higher potential production of unviable diploid males in inbred matings. Few studies have focused on mating strategies in insect parasitoids and even less on kinship relationships during mate choice. In this study we tested avoidance of kin as mate in the parasitic wasp Aphidius matricariae (Hymenoptera: Braconidae) using an ethological approach. Key mating parameters, such as male wing fanning, latent period before genitalia contact and duration of copulation were measured. No evidence for kin avoidance in mate choice in both A. matricariae males and females was observed in our behaviour (no choice or choice tests) tests. This lack of ethological sib mating avoidance could be due to different factors such as sex determination rule different than the single locus complementary sex determination, making lower the proportion of diploid males in case of sib matings and thus its negative consequence. The existence of other inbreeding avoidance strategies and mechanisms that reduce the probability of 2 receptive relatives meeting in nature may be common, for example, inbred mating may be rare through differential dispersal, delayed maturation, or protandry.  相似文献   
17.
植物交酸系统的进化、资源分配对策与遗传多样性   总被引:37,自引:10,他引:27       下载免费PDF全文
影响植物自交率进化的选择力量主要体现在两个方面:当外来花粉量不足时,自交可以提高植物的结实率,即雌性适合度(繁殖保障);而如果进行自交的花粉比异交花粉更易获得使胚珠受精的机会,那么自交也可以提高植物的雄性适合度(自动选择优势)。但是,鉴别什么时候是繁殖保障、什么时候是自动选择优势导致了自交的进化却是极其困难的。花粉贴现降低了自交植物通过异交花粉途径获得的适合度,即减弱了自动选择优势,而近交衰退既减少了自动选择优势也减少了繁残给自交者带来的利益。具有不同交配系统的植物种群将具有不同的资源分配对策。理论研究已经说明,自交率增加将减少植物对雄性功能的资源分配比例,但将使繁殖分配加大,而且在一定条件下交配系统在改变甚至可以导致植物生活史发生剧烈变化,即从多年生变为一年生。文献中支持自交减少植物雄性投入的证据有很多,但是对繁殖分配与自交率的关系目前还没有系统的研究,资源分配理论可以解释植物繁育系统的多样性,尤其是能够3说明为什么大多数植物都是雌雄同体的,自交对植物种群遗传结构的影响是减少种群内的遗传变异,增加种群间的遗传分化,长期以来人们一直猜测,自交者可能会丢掉一些长期进化的潜能,目前这个假说得到了一些支持。  相似文献   
18.
Inbreeding mating systems are uncommon because of inbreeding depression. Mating among close relatives can evolve, however, when outcrossing is constrained. Social spiders show obligatory mating among siblings. In combination with a female‐biased sex ratio, sib‐mating results in small effective populations. In such a system, high genetic homozygosity is expected, and drift may cause population divergence. We tested the effect of outcrossing in the social spider Stegodyphus dumicola. Females were mated to sib‐males, to a non‐nestmate within the population, or to a male from a distant population, and fitness traits of F1s were compared. We found reduced hatching success of broods from between‐population crosses, suggesting the presence of population divergence at a large geographical scale that may result in population incompatibility. However, a lack of a difference in offspring performance between inbred and outbred crosses indicates little genetic variation between populations, and could suggest recent colonization by a common ancestor. This is consistent with population dynamics of frequent colonizations by single sib‐mated females of common origin, and extinctions of populations after few generations. Although drift or single mutations can lead to population divergence at a relatively short time scale, it is possible that dynamic population processes homogenize these effects at longer time scales.  相似文献   
19.
Inbreeding depression for fitness traits is a key issue in evolutionary biology and conservation genetics. The magnitude of inbreeding depression, though, may critically depend on the efficiency of genetic purging, the elimination or recessive deleterious mutations by natural selection after they are exposed by inbreeding. However, the detection and quantification of genetic purging for nonlethal mutations is a rather difficult task. Here, we present two comprehensive sets of experiments with Drosophila aimed at detecting genetic purging in competitive conditions and quantifying its magnitude. We obtain, for the first time in competitive conditions, an estimate for the predictive parameter, the purging coefficient (d), that quantifies the magnitude of genetic purging, either against overall inbreeding depression (d ≈ 0.3), or against the component ascribed to nonlethal alleles (dNL ≈ 0.2). We find that competitive fitness declines at a high rate when inbreeding increases in the absence of purging. However, in moderate size populations under competitive conditions, inbreeding depression need not be too dramatic in the medium to short term, as the efficiency of purging is also very high. Furthermore, we find that purging occurred under competitive conditions also reduced the inbreeding depression that is expressed in the absence of competition.  相似文献   
20.
A new autosomal recessive genetic condition, the SPOAN syndrome (an acronym for spastic paraplegia, optic atrophy and neuropathy syndrome), was recently discovered in an isolated region of the State of Rio Grande do Norte in Northeast Brazil, in a population that was identified by the IBGE (Brazilian Institute of Geography and Statistics) as belonging to the Brazilian communities with the highest rates of "deficiencies" (Neri, 2003), a term used to describe diseases, malformations, and handicaps in general. This prompted us to conduct a study of consanguinity levels in five of its municipal districts by directly interviewing their inhabitants. Information on 7,639 couples (corresponding to about 40% of the whole population of the studied districts) was obtained. The research disclosed the existence of very high frequencies of consanguineous marriages, which varied from about 9% to 32%, suggesting the presence of a direct association between genetic diseases such as the SPOAN syndrome, genetic drift and inbreeding levels. This fact calls for the introduction of educational programs for the local populations, as well as for further studies aiming to identify and characterize other genetic conditions. Epidemiological strategies developed to collect inbreeding data, with the collaboration of health systems available in the region, might be very successful in the prospecting of genetic disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号