首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   977篇
  免费   110篇
  国内免费   33篇
  2024年   1篇
  2023年   16篇
  2022年   15篇
  2021年   30篇
  2020年   30篇
  2019年   22篇
  2018年   37篇
  2017年   20篇
  2016年   32篇
  2015年   30篇
  2014年   25篇
  2013年   48篇
  2012年   23篇
  2011年   31篇
  2010年   15篇
  2009年   49篇
  2008年   41篇
  2007年   48篇
  2006年   49篇
  2005年   36篇
  2004年   25篇
  2003年   50篇
  2002年   32篇
  2001年   22篇
  2000年   41篇
  1999年   38篇
  1998年   30篇
  1997年   27篇
  1996年   31篇
  1995年   32篇
  1994年   31篇
  1993年   26篇
  1992年   17篇
  1991年   20篇
  1990年   17篇
  1989年   12篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   11篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有1120条查询结果,搜索用时 328 毫秒
91.
利用扫描电子显微镜对东亚特有植物黄三七(Souliea vaginata(Maxim.) Franch.)茎的次生木质部离析材料进行了观察,结果表明,黄三七茎次生木质部中的导管分子端壁上具网状穿孔板(麻黄式穿孔板)、梯状穿孔板、网状-梯状混合穿孔板、网状-梯状-单穿孔混合型穿孔板、梯状-单穿孔混合型穿孔板及单穿孔板,同时也观察到了端壁多穿孔板和侧壁穿孔板,并对不同类型穿孔板中纹孔膜的残留也进行了观察。其中,网状穿孔板、各种过渡类型的穿孔板均为毛茛科植物中首次报道。根据观察结果,对导管分子穿孔板的演化及黄三七属植物的系统位置进行了分析。  相似文献   
92.
BACKGROUND AND AIMS: Bacterial leaf scorch occurring in a number of economically important plants is caused by the xylem-limited bacterium Xylella fastidiosa (Xf). In grapevine, Xf systemic infection causes Pierce's disease and is lethal. Traditional dogma is that Xf movement between vessels requires the digestion of inter-vessel pit membranes. However, Yersinia enterocolitica (Ye) (a bacterium found in animals) and fluorescent beads moved rapidly within grapevine xylem from stem into leaf lamina, suggesting open conduits consisting of long, branched xylem vessels for passive movement. This study builds on and expands previous observations on the nature of these conduits and how they affect Xf movement. METHODS: Air, latex paint and green fluorescence protein (GFP)-Xf were loaded into leaves and followed to confirm and identify these conduits. Leaf xylem anatomy was studied to determine the basis for the free and sometimes restricted movement of Ye, beads, air, paint and GFP-Xf into the lamina. KEY RESULTS: Reverse loading experiments demonstrated that long, branched xylem vessels occurred exclusively in primary xylem. They were observed in the stem for three internodes before diverging into mature leaves. However, this stem-leaf connection was an age-dependent character and was absent for the first 10-12 leaves basal to the apical meristem. Free movement in leaf blade xylem was cell-type specific with vessels facilitating movement in the body of the blade and tracheids near the leaf margin. Air, latex paint and GFP-Xf all moved about 50-60% of the leaf length. GFP-Xf was never observed close to the leaf margin. CONCLUSIONS: The open vessels of the primary xylem offered unimpeded long distance pathways bridging stem to leaves, possibly facilitating the spread of bacterial pathogens in planta. GFP-Xf never reached the leaf margins where scorching appeared, suggesting a signal targeting specific cells or a toxic build-up at hydathodes.  相似文献   
93.
The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method.  相似文献   
94.
In illuminated stems and branches, CO2 release is often reduced. Many light-triggered processes are thought to contribute to this reduction, namely photorespiration, corticular photosynthesis or even an inhibition of mitochondrial respiration. In this study, we investigated these processes with the objective to discriminate their influence to the overall reduction of branch CO2 release in the light. CO2 gas-exchange measurements of young birch (Betula pendula Roth.) branches (< 1.5 cm) performed under photorespiratory (20% O2) and non-photorespiratory (< 2%) conditions revealed that photorespiration does not play a pre-dominant role in carbon exchange. This suppression of photorespiration was attributed to the high CO2 concentrations (C(i)) within the bark tissues (1544 +/- 227 and 618 +/- 43 micromol CO2 mol(-1) in the dark and in the light, respectively). Changes in xylem CO2 were not likely to explain the observed decrease in stem CO2 release as gas-exchange measurements before and after cutting of the branches did not effect CO2 efflux to the atmosphere. Combined fluorescence and gas-exchange measurements provided evidence that the light-dependent reduction in CO2 release can pre-dominantly be attributed to corticular refixation, whereas an inhibition of mitochondrial respiration in the light is unlikely to occur. Corticular photosynthesis was able to refix up to 97% of the CO2 produced by branch respiration, although it rarely led to a positive net photosynthetic rate.  相似文献   
95.
Abstract The death of smaller stems of trees due to fire is widespread in savannas. There are currently two hypotheses as to how tree stems avoid stem death; by (i) growing tall and enabling the terminal buds to escape being scorched; and (ii) growing a larger stem diameter and thus being buffered against the heat of the fire. Laboratory‐based tests of these hypotheses on one savanna tree species, Acacia karroo Haynes, support the contention that the important parameter is stem diameter. In addition, anatomical evidence of heat impacts to xylem suggests that damage to the xylem of a stem may play a mechanistic role in causing stem death.  相似文献   
96.

Background and Aims

Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.

Methods

Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.

Key Results

Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.

Conclusions

Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots.  相似文献   
97.

Background and Aims

Plasticity in structural and functional traits related to water balance may determine plant performance and survival in ecosystems characterized by water limitation or high levels of rainfall variability, particularly in perennial herbaceous species with long generation cycles. This paper addresses whether and the extent to which several such seasonal to long-term traits respond to changes in moisture availability.

Methods

Using a novel approach that integrates ecology, physiology and anatomy, a comparison was made of lifetime functional traits in the root xylem of a long-lived perennial herb (Potentilla diversifolia, Rosaceae) growing in dry habitats with those of nearby individuals growing where soil moisture had been supplemented for 14 years. Traditional parameters such as specific leaf area (SLA) and above-ground growth were also assessed.

Key Results

Individuals from the site receiving supplemental moisture consistently showed significant responses in all considered traits related to water balance: SLA was greater by 24 %; roots developed 19 % less starch storing tissue, an indicator for drought-stress tolerance; and vessel size distributions shifted towards wider elements that collectively conducted water 54 % more efficiently – but only during the years for which moisture was supplemented. In contrast, above-ground growth parameters showed insignificant or inconsistent responses.

Conclusions

The phenotypic changes documented represent consistent, dynamic responses to increased moisture availability that should increase plant competitive ability. The functional plasticity of xylem anatomy quantified in this study constitutes a mechanistic basis for anticipating the differential success of plant species in response to climate variability and change, particularly where water limitation occurs.  相似文献   
98.
Vulnerability curves using the 'Cavitron' centrifuge rotor yield anomalous results when vessels extend from the end of the stem segment to the centre ('open-to-centre' vessels). Curves showing a decline in conductivity at modest xylem pressures ('r' shaped) have been attributed to this artefact. We determined whether the original centrifugal method with its different rotor is influenced by open-to-centre vessels. Increasing the proportion of open-to-centre vessels by shortening stems had no substantial effect in four species. Nor was there more embolism at the segment end versus centre as seen in the Cavitron. The dehydration method yielded an 'r' shaped curve in Quercus gambelii that was similar to centrifuged stems with 86% open-to-centre vessels. Both 'r' and 's' (sigmoidal) curves from Cercocarpus intricatus were consistent with each other, differing only in whether native embolism had been removed. An 'r' shaped centrifuge curve in Olea europaea was indistinguishable from the loss of conductivity caused by forcing air directly across vessel end-walls. We conclude that centrifuge curves on long-vesselled material are not always prone to the open vessel artefact when the original rotor design is used, and 'r' shaped curves are not necessarily artefacts. Nevertheless, confirming curves with native embolism and dehydration data is recommended.  相似文献   
99.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   
100.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号