首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   14篇
  国内免费   41篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   10篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   18篇
  2013年   26篇
  2012年   11篇
  2011年   22篇
  2010年   20篇
  2009年   19篇
  2008年   27篇
  2007年   19篇
  2006年   23篇
  2005年   19篇
  2004年   37篇
  2003年   27篇
  2002年   27篇
  2001年   15篇
  2000年   16篇
  1999年   12篇
  1998年   12篇
  1997年   7篇
  1996年   12篇
  1995年   11篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1984年   3篇
  1982年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有446条查询结果,搜索用时 78 毫秒
61.
Substantial progress has been made in determining the mechanism of mitochondrial RNA editing in trypanosomes. Similarly, considerable progress has been made in identifying the components of the editosome complex that catalyze RNA editing. However, it is still not clear how those proteins work together. Chemical compounds obtained from a high-throughput screen against the editosome may block or affect one or more steps in the editing cycle. Therefore, the identification of new chemical compounds will generate valuable molecular probes for dissecting the editosome function and assembly. In previous studies, in vitro editing assays were carried out using radio-labeled RNA. These assays are time consuming, inefficient and unsuitable for high-throughput purposes. Here, a homogenous fluorescence-based “mix and measure” hammerhead ribozyme in vitro reporter assay to monitor RNA editing, is presented. Only as a consequence of RNA editing of the hammerhead ribozyme a fluorescence resonance energy transfer (FRET) oligoribonucleotide substrate undergoes cleavage. This in turn results in separation of the fluorophore from the quencher thereby producing a signal. In contrast, when the editosome function is inhibited, the fluorescence signal will be quenched. This is a highly sensitive and simple assay that should be generally applicable to monitor in vitro RNA editing or high throughput screening of chemicals that can inhibit the editosome function.  相似文献   
62.
Abstract

Nucleophilic displacement reactions of guanosine- and inosine-derived pyridinium salts will be discussed in a view of their preparative applications in nucleoside and oligonucleotide chemistry.  相似文献   
63.
Molecular cloning of calcium channel subunit genes has identified an unexpectedly large number of genes and splicing variants, and a central problem of calcium channel biology is to now understand the functional significance of this genetic complexity. While electrophyisological, pharmacological, and molecular cloning techniques are providing one level of understanding, a complete understanding will require many additional kinds of studies, including genetic studies done in intact animals. In this regard, an intriguing variety of episodic diseases have recently been identified that result from defects in calcium channel genes. A study of these diseases illustrates the kind of insights into calcium channel function that can be expected from this method of inquiry.  相似文献   
64.
We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust binding of cellulose in both the powdered and paper form, but did not show any significant binding of closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using glucosamine 6-phosphate to activate glmS ribozyme function.  相似文献   
65.
Abstract

Design, synthesis and properties of catalytic NAs for targeting MDR1 mRNA are reported.  相似文献   
66.
The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn‐ and Cu‐phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T1) and the charge‐transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin–orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T1 and the CT state does not substantially affect nonradiative voltage losses.  相似文献   
67.
To study the expression activity of various vectors containing anti-caspase-3 ribozyme cassettesin vivo, and to further study the role of caspas-3 in the apoptotic pathway, we constructed anti-caspase-3 hammerhead ribozyme embedded into the human snRNA U6, and detected the activity of the ribozymein vitro andin vivo. Meanwhile we compared it with the self-cleaving hammerhead ribozymes that we previously studied, and with the general ribozyme, cloned into RNA polymerase II expression systems. The results showed that the three ribozymes, p1.5RZ107, pRZ107 and pU6RZ107 had the correct structure, and that they could cleave caspase-3 mRNA exactly to produce two fragments: 143nt/553nt. p1.5RZ107 has the highest cleavage efficiencyin vitro, almost 80%. However, the U6 chimeric ribozyme, pU6RZ107, has the highest cleavage activityin vivo, almost to 65%, though it has lower cleavage activityin vitro. The cleavage results demonstrated that the pU6RZ107, the U6 chimeric ribozyme, could more efficiently express and downregulate the level of caspase-3in vivo, and the ribozyme could provide an alternative approach to the research into the mechanism of apoptosis and human gene therapy also.  相似文献   
68.
RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo.  相似文献   
69.
根据锤头核酶模型,设计合成了一个以黄瓜花叶病毒(CMV) 外壳蛋白(CP) 亚基因组RNA 为底物的锤头型核酶(RZC) 。在证明它能有效切割该底物后,再将这个核酶与一个能专一性切割烟草花叶病毒(TMV) 移动蛋白( MP) 亚基因组RNA 的锤头型核酶(RZ1) 相互串联构成了一个双价核酶(RZ1C) 。体外结果表明,这个双价核酶能与相应的单价核酶RZ1 和RZC 一样专一而有效地切割CMVCP和TMV MPRNA。  相似文献   
70.
逆转录病毒载体介导胸苷磷酸化酶在胰腺癌细胞表达   总被引:4,自引:1,他引:3  
人胸腺嘧啶核苷磷酸化酶(TP)在一些肿瘤组织中活性增高,但其功能目前了解尚少。构建了表达TP的重组逆转录病毒载体,直接导入人胰腺癌PC-2细胞,mPCR扩增、Southern及Northern印迹和原位杂交证实转染细胞有外源TP的整合及表达,酶活性检测发现含外源TP细胞TP活性比PC-2细胞的内源性TP活性高TP活性高40-70倍,生长曲线和^3H-TdR参入率检测未发现含外源TP细胞生物学行为的  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号