首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3743篇
  免费   185篇
  国内免费   381篇
  2024年   2篇
  2023年   23篇
  2022年   16篇
  2021年   48篇
  2020年   58篇
  2019年   59篇
  2018年   75篇
  2017年   54篇
  2016年   89篇
  2015年   76篇
  2014年   122篇
  2013年   191篇
  2012年   137篇
  2011年   151篇
  2010年   128篇
  2009年   164篇
  2008年   179篇
  2007年   173篇
  2006年   240篇
  2005年   266篇
  2004年   236篇
  2003年   250篇
  2002年   235篇
  2001年   221篇
  2000年   166篇
  1999年   135篇
  1998年   151篇
  1997年   108篇
  1996年   113篇
  1995年   83篇
  1994年   110篇
  1993年   70篇
  1992年   45篇
  1991年   45篇
  1990年   26篇
  1989年   12篇
  1988年   14篇
  1987年   5篇
  1986年   11篇
  1985年   4篇
  1984年   4篇
  1982年   2篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1974年   1篇
  1973年   1篇
  1958年   1篇
  1950年   2篇
排序方式: 共有4309条查询结果,搜索用时 15 毫秒
91.
The NeIF-4A10 gene belongs to a family of at least ten genes, all of which encode closely related isoforms of translation initiation factor 4A. The promoter region of NeIF-4A10 was sequenced, and four mRNA 5 ends were determined. Deletions containing 2750, 689 and 188 bp of untranscribed upstream DNA were fused to the GUS reporter gene and introduced into transgenic tobacco. The three constructs mediated GUS expression in all cells of the leaf, stem and shoot apical meristem. Control experiments using in situ hybridization and tissue printing indicated that the observed GUS expression matches the expression patterns of NeIF-4A mRNA and protein. This detailed analysis at the level of mRNA, protein and reporter gene expression shows that NeIF-4A10 is an ideal constitutively expressed control gene. We argue that inclusion of such a control gene in experiments dealing with specifically expressed genes is in many cases essential for the correct interpretation of observed expression patterns.  相似文献   
92.
The tissue-specific, developmental, and genetic control of four endosperm-active genes was studied via expression of GUS reporter genes in transgenic maize plants. The transgenes included promoters from the maize granule-bound starch synthase (Waxy) gene (zmGBS), a maize 27 kDa zein gene (zmZ27), a rice small subunit ADP-glucose pyrophosphorylase gene (osAGP) and the rice glutelin 1 gene (osGT1). Most plants had a transgene expression profile similar to that of the endogenous gene: expression in the pollen and endosperm for the zmGBS transgene, and endosperm only for the others. Histological analysis indicated expression initiated at the periphery of the endosperm for zmGBS, zmZ27 and osGT1, while osAGP transgene activity tended to start in the lower portion of the seed. Transgene expression at the RNA level was proportional to GUS activity, and did not influence endogenous gene expression. Genetic analysis showed that there was a positive dosage response with most lines. Activity of the zmGBS transgene was threefold higher in a low starch (shrunken2) genetic background. This effect was not seen with zmZ27 or osGT1 transgenes. The expression of the transgenes is discussed relative to the known behaviour of the endogenous genes, and the developmental programme of the maize endosperm  相似文献   
93.
The maize b-32 protein is a functional ribosome-inactivating protein (RIP), inhibiting in vitro translation in the cell-free reticulocyte-derived system and having specific N-glycosidase activity on 28S rRNA. Previous results indicated that opaque-2 (o2) mutant kernels, lacking b-32, show an increased susceptibility to fungal attack and insect feeding and that ectopic expression in plants of a barley and a pokeweed RIP leads to increased tolerance to fungal and viral infection. This prompted us to test whether b-32 might functi on as a protectant against pathogens. The b32.66 cDNA clone under the control of the potato wun1 gene promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Out of 23 kanamycin resistant regenerated shoots, 16 contained a PCR fragment of the corrrect size spanning the boundary between the promoter used and the coding region of the b-32 gene. Eight independently transformed tobacco lines were randomly chosen for protein analysis: all of them expressed b-32 protein. The data presented indicate that transgenic tobacco plants expressing b-32 show an increased tolerance against infection by the soil-borne fungal pathogen Rhizoctonia solani Kuhn  相似文献   
94.
To characterize long-term actions and interactions of growth hormone (GH) and insulin-like growth factor-II (IGF-II) on postnatal body and organ growth, hemizygous phosphoenolpyruvate carboxykinase (PEPCK)-human IGF-II transgenic mice were crossed with hemizygous PEPCK-bovine GH transgenic mice. The latter are characterized by two-fold increased serum levels of IGF-I and exhibit markedly increased body, skeletal and organ growth. Four different genetic groups were obtained: mice harbouring the IGF-II transgene (I), the bGH transgene (B), or both transgenes (IB), and non- transgenic controls (C). These groups of mice have previously been studied for circulating IGF-I levels (Wolf et al., 1995a), whereas the present study deals with body and organ growth. Growth curves (week 3 to 12) were estimated by regression with linear and quadratic components of age on body weight and exhibited significantly (p < 0.001) greater linear coefficients in B and IB than in I and C mice. The linear coefficients of male I and C mice were significantly (p < 0.001) greater than those of their female counterparts, whereas this sex-related difference was absent in the bGH transgenic groups. The weights of internal organs as well as the weights of abdominal fat, skin and carcass were recorded from 3.5- to 8- month-old mice. In addition, organ weight-to-body weight-ratios (relative organ weights) were calculated. Except for the weight of abdominal fat, absolute organ weights were as a rule significantly greater in B and IB than in I and C mice. IGF-II overproduction as a tendency increased the weights of kidneys, adrenal glands, pancreas and uterus both in the absence and presence of the bGH transgene. Analysis of relative organ weights demonstrated significant (p < 0.05) effects of elevated IGF- II on the relative growth of kidneys (males and females) and adrenal glands (females), confirming our previous report on organ growth of PEPCK-IGF-II transgenic mice. In females, IGF-II and GH overproduction were additive in stimulating the growth of spleen and uterus, providing evidence for tissue-specific postnatal growth promoting effects by IGF-II in the presence of elevated IGF-I  相似文献   
95.
96.
Because of the apparent clinical importance of human pulmonary surfactant B (SP-B), the expression of SP-B was directed to the mammary gland of transgenic mice using previously characterized rat whey acidic protein (WAP) regulatory sequences. rWAP/SP-B mRNA was expressed specifically in the mammary gland, and ranged from 1 to 5% of the endogenous WAP mRNA levels. SP-B was detected immunologically in both tissue and milk. The transgene product had an apparent molecular weight of 40--45 kDa, corresponding to the predicted size of the SP-B proprotein. Incubation of an SP-B-enriched fraction of milk with cathepsin D in vitro produced 20--25 kDa species, consistent with cleavage of the amino terminal domain by cathepsin D. This was confirmed using antibodies specific to the carboxy-terminal domain of SP-B. However, the appearance of only the SP-B proprotein in milk suggests that cathepsin D is not involved in the in vivo processing of SP-B. The SP-B proprotein can be expressed in milk of transgenic mice without any observed effects on mammary gland morphology or lactation  相似文献   
97.
Betaine as one of osmolytes plays an important role in osmoregulation of most high plants. Betaine aldehyde dehydrogenase C BADH) is the second enzyme involved in betaine biosynthesis. The BADH gene from a halophite, Atriplex hortensis, was transformed into rice cultivars by bombarment method. Totally 192 transgenic rice plants were obtained and most of them had higher salt tolerance than controls. Among transgenic plants transplanted in the saline pool containing 0.5% NaCl in a greenhouse, 22 survived, 13 of which set seeds, and the frequency of seed setting was very low, only 10% . But the controls could not grow under the same condition. The results of BADH ac-tivity assay and Northern blot showed that the BADH gene was integrated into chromosomes of transgenic plants and expressed.  相似文献   
98.
99.
A procedure for the fast production of homozygotic transgenic plants was developed. Leaf discs of haploid tobacco plants from anther cultures were transformed with a chimaeric vector containing coat protein (CP) and satellite RNA (Sat-RNA) genes from cucumber mosaic virus (CMV). One-hundred-and-twelve Kanamycin-resistant transformed haploid plants were subjected to selection based on the expression of both CP and Sat-RNA. Eighty-nine transgenic plants expressing both genes were selected and tested for their resistance to CMV by inoculation with high concentration of CMV (200 g ml–1). Only five plants showed no symptoms of viral infection 30 days after inoculation. These plants were then diploidized by colchicine treatment. Three homozygous diploid lines with high levels of resistance to CMV were obtained after only one generation. The three transgenic lines were further tested under field conditions. The results showed that the progenies of these transgenic lines were homozygous and were highly resistant to CMV under natural field infection and manual inoculation conditions.  相似文献   
100.
高度耐盐双价转基因烟草的研究   总被引:30,自引:1,他引:29  
随着全球性人口的增长和土地退化的加剧,开发利用广阔盐碱地和干旱土地的需要日益迫切。植物生物技术的日臻完善,为培育高效耐盐植物迎来了一丝曙光。在高渗条件下,耐盐的微生物或植物细胞通过增加胞内一些相溶性溶质的浓度来维持渗透压的平衡。这些可溶性溶质包括无机离子、糖类、多元醇、氨基酸和生物碱等。通过基因工程手段,使细胞内积累脯氮酸⑴、甜菜碱⑵、甘露醇⑶、海藻糖⑷,能够不同程度地提高转基因烟草的耐盐性。多元醇含有多个羟基,亲水性能强,能有效维持细胞内水活度。山梨醇、甘露醇等己糖分子结构、理化性质和生理功能相近。故此.我们认为:不同糖醇在转基因烟草中的积累.可能具有协同(或累加)效应,有希望更大地提高植物耐盐性。我们在获得大肠杆菌mtlD基因(编码l-磷酸甘露醇脱氢酶)和gutD基因(编码6-磷酸山梨醇脱氢酶)克隆⑸的基础上,获得了分别表达mtlD和gutD基因的单价转基因烟草,并首次证实了gucD基因的表达,能显著地提高转基因烟草的耐盐性⑹。本文工作进一步报道同时表达大肠杆菌mtlD和gutD基因双价转基因烟草的高效高度耐盐性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号