首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   19篇
  国内免费   22篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   6篇
  2018年   17篇
  2017年   8篇
  2016年   10篇
  2015年   6篇
  2014年   56篇
  2013年   33篇
  2012年   33篇
  2011年   59篇
  2010年   60篇
  2009年   24篇
  2008年   38篇
  2007年   21篇
  2006年   17篇
  2005年   13篇
  2004年   6篇
  2003年   2篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
81.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   
82.
Myostatin (MSTN) is a well-known negative regulator of skeletal muscle development. Reduced expression due to natural mutations in the coding region and knockout as well as knockdown of MSTN results in an increase in the muscle mass. In the present study, we demonstrated as high as 60 and 52% downregulation (p?MSTN mRNA and protein in the primary fetal myoblast cells of goats using synthetic shRNAs (n?=?3), without any interferon response. We, for the first time, evaluated the effect of MSTN knockdown on the expression of MRFs (namely, MyoD, Myf5), follistatin (FST), and IGFs (IGF-1 &; IGF-2) in goat myoblast cells. MSTN knockdown caused an upregulation (p?MyoD and downregulation (p?MYf5 and FST expression. Moreover, we report up to ~four fold (p?shRNA demonstrated in the present study could be used for the production of transgenic goats to increase the muscle mass.  相似文献   
83.
报道了在里氏木霉中建立的一种以红色荧光蛋白(DsRed)为报告基因的RNA干扰方法。首先,将构建的表达DsRed质粒p ANRed1转化里氏木霉QM9414,得到抗潮霉素B抗性并能稳定表达DsRed的菌株DsRed-T.reesei。其次,以丙酮酸脱氢酶启动子Ppdc和纤维二糖水解酶I终止子cbh I为原件,克隆到载体p PHL上构建质粒p PHL-Ppdc-Tcbh1。根据DsRed基因序列设计特定的siRNA干扰序列和另一条无同源序列的siRNA作为阴性对照,克隆到载体p PHL-Ppdc-Tcbh1得到重组质粒。将其转化到DsRed-T.reesei中,用含有100μg/m L潮霉素B和250μg/m L腐草霉素的PDA平板筛选转化子。结果表明,约79%的转化子出现红色荧光沉默现象,其中一些转化子DsRed的表达几乎完全被抑制。荧光定量PCR和Western印迹分析显示DsRed基因的表达受到不同程度的下调。以上结果提示,在里氏木霉中可用此方法研究基因表达调控。  相似文献   
84.
Overexpression of inducible subunits of immunoproteasome is related to pathogenesis of some chronic diseases. Specific inhibition of the immunosubunits may be used for the treatment of these diseases and RNA interference is one of the potent methods used in this area. We designed 2′-O-methyl modified siRNAs with selectively protected nuclease-sensitive sites, which efficiently silence LMP2, LMP7, and MECL-1 genes expression. To provide stable long-lasting inhibition of target genes, short-hairpin RNAs (shRNA) expressed by lentiviral vectors were constructed. Our results demonstrated that chemically modified siRNAs inhibited the expression of target genes with similar efficiency or with efficiency exceeding that of corresponding shRNAs and provide silencing effect for 5 days.  相似文献   
85.
RNA interference (RNAi) was discovered as a cellular defense mechanism more than decade ago. It has been exploited as a powerful tool for genetic manipulation. Characterized with specifically silencing target gene expression, it has great potential application for disease treatment. Currently, there are human clinical trials in progress or planned. Despite the excitement regarding this prominent technology, there are many obstacles and concerns that prevent RNAi from being widely used in the therapeutic field. Among them, the non-spatial and non-temporal control is the most difficult challenge, as well as off-target effects and triggering type I immune responses. Inducible RNAi technology can effectively regulate target genes by inducer-mediated small hairpin RNA expression. Combination with inducible regulation systems this makes RNAi technology more sophisticated and may provide a wider application field. This review discusses approaches of inducible RNAi systems, the potential problem areas and solutions and their therapeutic applications. Given the limitations discussed herein being resolved, we believe that inducible RNAi will be a major therapeutic modality within the next several years.  相似文献   
86.
Development of cholangiocarcinoma (CCA) is dependent on a cross-talk with stromal cells, which release different chemokines including CXCL12, that interacts with two different receptors, CXCR4 and CXCR7. The aim of the present study was to investigate the role of CXCR7 in CCA cells. CXCR7 is overexpressed by different CCA cell lines and in human CCA specimens. Knock-down of CXCR7 in HuCCT-1 cells reduced migration, invasion, and CXCL12-induced adhesion to collagen I. Survival of CCA was also reduced in CXCR7-silenced cells. The ability of CXCL12 to induce cell migration and survival was also blocked by CCX733, a CXCR7 antagonist. Similar effects of CXCR7 activation were observed in CCLP-1 cells and in primary iCCA cells. Enrichment of tumor stem-like cells by a 3D culture system resulted in increased CXCR7 expression compared to cells grown in monolayers, and genetic knockdown of CXCR7 robustly reduced sphere formation both in HuCCT-1 and in CCLP-1 cells. In HuCCT-1 cells CXCR7 was found to interact with β-arrestin 2, which was necessary to mediate CXCL12-induced migration, but not survival. In conclusion, CXCR7 is widely expressed in CCA, and contributes to the aggressive phenotype of CCA cells, inducing cell migration, invasion, adhesion, survival, growth and stem cell-like features. Cell migration induced by CXCR7 requires interaction with β-arrestin 2.  相似文献   
87.
This study was designed to explore the RNA interference technique in inhibition of the expression of the mouse fibrinogen like protein 2 (mfgl2), which has been reported to be involved in the development a variety of diseases including fulminant viral hepatitis. A plasmid named p-mfgl2shRNA, complementary to the sequence of mfgl2 was constructed, while another short hairpin RNA (shRNA) which was a mutated form of the mfgl2shRNA sequences was used as a control. A plasmid named pEGFP-mfgl2 expressing the mfgl2-EGFP fusion protein was also constructed for the screening of the effect of p-mfgl2shRNA on mfgl2 expression. By cotransfection of p-mfgl2shRNA and pEGFP-mfgl2 or pcDNA3.1-mfgl2 expression construct into CHO cells or HeLa cells, the inhibition of mfgl2 expression by mfgl2shRNA was analyzed by direct observation through fluorescent microscopy, FACS, RT-PCR and immunohistochemistry staining. The experiments showed the significant inhibitory effect of p-mfgl2shRNA on mfgl2 expression at 48h post-transfection in both CHO and Hela cell lines with the inhibitory efficiency as high as 80.1%. The study demonstrated that the construct of p-mfgl2shRNA successfully interfered with the mfgl2 expression in vitro. These authors contributed equally.  相似文献   
88.
Bax is kept inactive in the cytosol by refolding its C-terminal transmembrane domain into the hydrophobic binding pocket. Although energetic calculations predicted this conformation to be stable, numerous Bax binding proteins were reported and suggested to further stabilize inactive Bax. Unfortunately, most of them have not been validated in a physiological context on the endogenous level. Here we use gel filtration analysis of the cytosol of primary and established cells to show that endogenous, inactive Bax runs 20-30 kDa higher than recombinant Bax, suggesting Bax dimerization or the binding of a small protein. Dimerization was excluded by a lack of interaction of differentially tagged Bax proteins and by comparing the sizes of dimerized recombinant Bax with cytosolic Bax on blue native gels. Surprisingly, when analyzing cytosolic Bax complexes by high sensitivity mass spectrometry after anti-Bax immunoprecipitation or consecutive purification by gel filtration and blue native gel electrophoresis, we detected only one protein, called p23 hsp90 co-chaperone, which consistently and specifically co-purified with Bax. However, this protein could not be validated as a crucial inhibitory Bax binding partner as its over- or underexpression did not show any apoptosis defects. By contrast, cytosolic Bax exhibits a slight molecular mass shift on SDS-PAGE as compared with recombinant Bax, which suggests a posttranslational modification and/or a structural difference between the two proteins. We propose that in most healthy cells, cytosolic endogenous Bax is a monomeric protein that does not necessarily need a binding partner to keep its pro-apoptotic activity in check.  相似文献   
89.
After de novo biosynthesis phospholipids undergo extensive remodeling by the Lands' cycle. Enzymes involved in phospholipid biosynthesis have been studied extensively but not those involved in reacylation of lysophosphopholipids. One key enzyme in the Lands' cycle is fatty acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT), which utilizes lysophosphatidylcholine (LysoPC) and fatty acyl-CoA to produce various phosphatidylcholine (PC) species. Four isoforms of LPCAT have been identified. In this study we found that LPCAT3 is the major hepatic isoform, and its knockdown significantly reduces hepatic LPCAT activity. Moreover, we report that hepatic LPCAT3 knockdown increases certain species of LysoPCs and decreases certain species of PC. A surprising observation was that LPCAT3 knockdown significantly reduces hepatic triglycerides. Despite this, these mice had higher plasma triglyceride and apoB levels. Lipoprotein production studies indicated that reductions in LPCAT3 enhanced assembly and secretion of triglyceride-rich apoB-containing lipoproteins. Furthermore, these mice had higher microsomal triglyceride transfer protein (MTP) mRNA and protein levels. Mechanistic studies in hepatoma cells revealed that LysoPC enhances secretion of apoB but not apoA-I in a concentration-dependent manner. Moreover, LysoPC increased MTP mRNA, protein, and activity. In short, these results indicate that hepatic LPCAT3 modulates VLDL production by regulating LysoPC levels and MTP expression.  相似文献   
90.
CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号