首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4824篇
  免费   923篇
  国内免费   2141篇
  2024年   6篇
  2023年   276篇
  2022年   226篇
  2021年   377篇
  2020年   382篇
  2019年   451篇
  2018年   345篇
  2017年   370篇
  2016年   395篇
  2015年   346篇
  2014年   332篇
  2013年   328篇
  2012年   273篇
  2011年   262篇
  2010年   260篇
  2009年   360篇
  2008年   297篇
  2007年   355篇
  2006年   308篇
  2005年   271篇
  2004年   229篇
  2003年   194篇
  2002年   172篇
  2001年   165篇
  2000年   142篇
  1999年   112篇
  1998年   121篇
  1997年   70篇
  1996年   80篇
  1995年   53篇
  1994年   45篇
  1993年   39篇
  1992年   53篇
  1991年   34篇
  1990年   41篇
  1989年   23篇
  1988年   17篇
  1987年   6篇
  1986年   9篇
  1985年   14篇
  1984年   6篇
  1983年   2篇
  1982年   12篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1958年   9篇
排序方式: 共有7888条查询结果,搜索用时 15 毫秒
111.
112.
 本文在生物生产力研究的基础之上,通过热值测定,对东北东部帽儿山地区21年生人工落叶松(Larix gmelinii)生态系统净初级生产力形成过程中的能量特征做了系统研究。结果表明:(1)植物热值随植物种类、器官、分布层次、年龄及季节而发生变化。(2)生态系统中活植物体的能量现存量为269.719×1010J/ha,而枯死体中的能量现存量为36.817×1010J/ha,其中凋落物层和立枯体中能量贮量各占84.04%和15.96%。 (3)生态系统能量净固定量为264.346×109J/ha·yr,其中29.49%的能量存留在植物体中,用于植物净生长。生态系统年能量归还量为88.809×109J/ha,其中32.39%的能量在当年被分解释放,余下能量积累于凋落物层之中;生态系统的能量转化效率为2.299%,与其它森林植物群落相比,落叶松人工林系统是高效率的能量代谢系统。  相似文献   
113.
茶园冬季乔木落叶的分解和矿质元素释放   总被引:1,自引:0,他引:1  
在我国南方存在着一种传统植茶方式——茶林复合生态系统,近年来人们已逐步认识到它在维持土壤肥力,抗御自然灾害和保证茶叶内质特性等方面的作用,然而对冬季乔木落叶分解和矿质元素释放的作用尚无报道。本文是对安徽省黄山市休宁县茶树-乌桕复合园和茶树-板栗复合园的冬季乔木落叶分解的研究,为全面认识茶林复合生态系统的性质提供依据。  相似文献   
114.
试论“三北”生态经济型防护林体系   总被引:7,自引:0,他引:7  
本文介绍了“三北”防护林体系工程的概要、建设指导思想和技术路线,从理论上较深入地探讨了林业观念更新的意义及其基础。从而,提出“生态经济型防护林体系”的学术概念,以及它同建立区域性人工生态系统的相互关系,并结合“三北”黄土高原昕水河流域生态经济型防护林体系示范区的特点进行分析,探讨丘陵山地条件下,生态经济型防护林体系的技术内涵、组成及其生态经济特点。最后,作者提出了由“三北”防护林工程的实践对我国如何建设好其它防护林工程的几点启示。  相似文献   
115.
Mangrove ecosystems occupy different locations on Caribbean island coasts, ranging from open bays (fringe mangals) to totally enclosed salt ponds and salinas. On geomorphologically active coastlines, such as south Jamaica, systems are at varying degrees of maturity and productivity. Furthermore, because of system variability, the interactions between mangroves and associated marine systems, such as coral reefs and seagrass beds, are developed to different degrees.Community structure and productivity of a range of mangals on different islands of the Greater and Lesser Antilles are discussed. Forcing functions and levels of interaction with the marine environment are identified.The rational choice of management options must be based on the range of goods and services provided by the different systems; and a good understanding of their ecology is essential when choosing sites for protection, waste disposal, landfill, marina development and fisheries enhancement. Examples are given from current studies in Jamaica, St. Lucia, the British Virgin Islands and Trinidad, of a flexible management response to mangrove ecosystem diversity.  相似文献   
116.
Summary Foliar 13C-abundance (13C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar 13C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The 13C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative 13C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive 13C-values than leaves from deciduous species. Foliar 13C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive 13C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar 13C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf 13C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar 13C indicated a higher ratio of net CO2 assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO2 fixed/mol H2O transpired) calculated on the basis of 13C-values for leaves from the more xeric sites was higher in a wet year (6.6±1.2) versus a dry year (3.4±0.4). This difference was attributed to higher transpiration (and therefore lower A/E) in the year with lower relative humidity and higher average daily temperature. The calculated A/E values for the forest in 1988–89, based on 13C, were within ±55% of estimates made over a 17 day period at this site in 1984 using micrometeorological methods.  相似文献   
117.
The general attributes of ecosystems are examined and a naturally occurring reference ecosystem is established, comparable with the isolated system of classical thermodynamics. Such an autonomous system with a stable, periodic input of energy is shown to assume certain structural characteristics that have an identifiable thermodynamic basis. Individual species tend to assume a state of least dissipation; this is most clearly evident in the dominant species (the species with the best integration of energy acquisition and conservation). It is concluded that ecosystem structure results from the antagonistic interaction of two nearly equal forces. These forces have their origin in the Principle of Most Action (least dissipation or least entropy production) and the universal Principle of Least Action. Most action is contingent on the equipartitioning of the energy available, through uniform interaction of similar individuals. The trend to Least action is contingent on increased dissipation attained through increasing diversity and increasing complexity. These principles exhibit a basic asymmetry. Given the operation of these opposing principles over evolutionary time, it is argued that ecosystems originated in the vicinity of thermodynamic equilibrium through the resonant amplification of reversible fluctuations. On account of the basic asymmetry the system was able to evolve away from thermodynamic equilibrium provided that it remained within the vicinity of ergodynamic equilibrium (equilibrium maintained by internal work, where the opposing forces are equal and opposite).At the highest level of generalization there appear to be three principles operating: i) maximum association of free-energy and materials; ii) energy conservation (deceleration of the energy flow) through symmetric interaction and increased homogeneity; and iii) the principle of least action which induces acceleration of the energy flow through asymmetrical interaction. The opposition and asymmetry of the two forces give rise to natural selection and evolution.  相似文献   
118.
The North Sea, one of the most productive of the earth's seas and oceans, is also surrounded by some of earth's most densely populated and heavily industrialized regions. A growing number of signals are being received which indicate that this valuable ecosystem is increasingly under stress. This has generated a corresponding increase in concern over the steps to be taken to protect the North Sea. While there are divergent views on what constitutes an ‘ideal’ North Sea, there is a general recognition that any decisions that are made should be based on a good understanding of this ecosystem. The intention of this paper is to give an overview of what is presently known, and to identify areas where more studies are needed. A brief summary of the hydrography and the biota of the North Sea is given. Biotic and abiotic structure justify partitioning the North Sea into three ecologically different regions: southern, central, and northern. For the most part, neither the top predators,e.g. marine birds and mammals, nor the macroalgae and sea grasses are included in this overview.  相似文献   
119.
Evidence for the geographic generality of the causes of intertidal zonation and the indirect effects of a keystone predator, the sea otter, on subtidal kelp assemblages was examined. Most research on intertidal algal assemblages has been done at a few protected sites where zonation is distinct. Surveys of wave-exposed intertidal sites in central and northern California show that assemblage structure is highly variable. This indicates that our present understanding of assemblage organization, including the effects of mussel-algal interactions, may not be widely applicable. Surveys of kelp forest habitat along the entire coast of California suggest that deforestation by sea urchins is uncommon in the absence of sea otters. These examples indicate that the generality of commonly accepted causes of algal assemblage structure in the Northeast Pacific may be an illusion based on assumptions of environmental homogeneity.  相似文献   
120.
Summary Nitrogen-fixing activity in hardwood forests of the northeastern United States occurred in wood litter, greater than 2 cm in diameter. Activity in large dead wood was independent of species, in the case of deciduous wood litter, but was restricted to partially decayed wood with a high moisture content. Maximum rates of activity were observed in the summer months, minimum rates in the winter. Evidence from six stands of varying ages showed that fixation in large wood litter occurred in only 25% of the samples assayed.Fixation was highest in the youngest, 4 years, and oldest, over 200 years, stands; being about 2 kg/ha/yr. The quantity of nitrogen fixed appears to be related to the biomass of dead wood. Large amounts of wood litter in the youngest stands were from slash left after cutting. As the supply of slash is exhausted by decay, nitrogen fixation decreases, with a low around year 20. Fixation then gradually increases as natural thinning adds wood to the litter compartment.Apparently, the amount of nitrogen fixed in dead wood the first 20 years following clearcutting can only replace a modest fraction of the amount lost as a result of the cutting and product removal. Finally, the results indicate that nitrogen fixation in wood litter does not equal nitrogen fixation in a northern hardwood forest calculated using a mass balance approach, suggesting that additional nitrogen inputs exist.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号