首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3719篇
  免费   218篇
  国内免费   641篇
  2024年   2篇
  2023年   53篇
  2022年   112篇
  2021年   105篇
  2020年   132篇
  2019年   126篇
  2018年   105篇
  2017年   133篇
  2016年   143篇
  2015年   115篇
  2014年   152篇
  2013年   337篇
  2012年   141篇
  2011年   235篇
  2010年   159篇
  2009年   282篇
  2008年   228篇
  2007年   199篇
  2006年   180篇
  2005年   175篇
  2004年   162篇
  2003年   158篇
  2002年   146篇
  2001年   128篇
  2000年   101篇
  1999年   96篇
  1998年   80篇
  1997年   58篇
  1996年   52篇
  1995年   77篇
  1994年   77篇
  1993年   50篇
  1992年   58篇
  1991年   59篇
  1990年   19篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   13篇
  1985年   32篇
  1984年   25篇
  1983年   9篇
  1982年   8篇
  1980年   4篇
  1979年   8篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
排序方式: 共有4578条查询结果,搜索用时 500 毫秒
41.
An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts.Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called Crabtree effect probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect inS. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast.S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions.Non-Saccharomyces yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeastCandida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.  相似文献   
42.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   
43.
An algorithm developed for pH computation has been tested to calculate the theoretical pH changes in a culture medium during the course of a fermentation. A divergence between the computed pH value and the value measured with the electrode allows us to highlight the presence of undetected ionic products. The calculation with the algorithm by means of a computer requires only the knowledge of the ionic properties of the substrates and detected products and existing thermodynamic constants. (c) 1993 Wiley & Sons, Inc.  相似文献   
44.
Studies on the batch extraction of lactic acid using an emulsion liquid membrane system are reported. The membrane phase consists of the tertiary amine carrier Alamine 336 and the surfactant Span 80 dissolved in n-heptane/paraffin and aqueous solutions of sodium carbonate in the internal phase. The effects of internal phase reagent, extraction temperature, and initial external phase pH on the extraction efficiency and the emulsion swelling are examined. A statistical factorial experiment on extraction from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the extraction system from a broth. The extraction efficiency from the fermentation broth is found to be lower as compared to aqueous solutions of pure lactic acid. The effect of pH and the presence of other ionic species on selectivity are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   
45.
The ability to genetically alter the product-formation capabilities of Clostridium acetobutylicum is necessary for continued progress toward industrial production of the solvents butanol and acetone by fermentation. Batch fermentations at pH 4.5, 5.5, or 6.5 were conducted using C. acetobutylicum ATCC 824 (pFNK6). Plasmid pFNK6 contains a synthetic operon (the "ace operon") in which the three homologous acetone-formation genas (adc, ctfA, and ctfB) are transcribed from the adc promoter. The corresponding enzymes (acetoacetate decarboxylase and CoA-transferase) were best expressed in pH 4.5 fermentations. However, the highest levels of solvents were attained at pH 5.5. Relative to the plasmid-free control strain at pH 5.5, ATCC 824 (pFNK6) produced 95%, 37%, and 90% higher final concentrations of acetone, butanol, and ethanol, respectively; a 50% higher yield (g/g) of solvents on glucose; and a 22-fold lower mass of residual carboxylic acids. At all pH values, the acetone-formation enzymes were expressed earlier with ATCC 824 (pFNK6) than in control fermentations, leading to earlier induction of acetone formation. Furthermore, strain ATCC 824 (pFNK6) produced butanol significantly earlier in the fermentation and produced significant levels of solvents at pH 6.5. Only trace levels of solvents were produced by strain ATCC 824 at pH 6.5. Compared with ATCC 824, a plasmid-control strain containing a vector without the ace operon also produced higher levels of solvents [although lower than those of strain ATCC 824 (pFNK6)] and lower levels of acids. Strains containing plasmid-borne derivatives of the ace operon, in which either the acetoacetate decarboxylase or CoA-transferase alone were expressed at elevated levels, produced acids and solvents at levels similar to those of the plasmid-control strain. (c) 1993 John Wiley & Sons, Inc.  相似文献   
46.
The use of partial cubic spline data interpolation for the calculation of volumetric metabolite exchange rates suggested the existence of three distinct metabolic phases during bioreactor culture of a hybridoma cell line. During phase 1, a rapid amino acid uptake rate and ammonia release rate were observed. The growth rate was low and glutamine synthetase activity fell. In phase 2, maximum growth rate and minimum glutamine assimilation and ammonium production rates were observed. Attempts to corroborate the apparent ammonia assimilation in this phase using (15)NH(4)Cl resulted in low incorporation rates into alanine and glutamine. Maximum glutamine synthetase activity took place during this period. Maximum antibody production rate was observed during phase 3 during which peaks in glutamine assimilation, ammonia release, and glutamine synthetase activity were observed. The apparent existence of the three phases prompted us to carry out Northern blot analysis of glutamine synthetase RNA at appropriate times during the process. This revealed a pattern of appearance and dis-appearance of mRNA consistent with the three phases indicated by the fermentation parameters. (c) 1993 John Wiley & Sons, Inc.  相似文献   
47.
The fungus Neurospora crassa harbors large amounts of cytoplasmic filaments which are homopolymers of a 59-kDa polypeptide (P59Nc). We have used molecular cloning, sequencing and enzyme activity measurement strategies to demonstrate that these filaments are made of pyruvate decarboxylase (PDC, EC 4.1.1.1), which is the key enzyme in the glycolytic-fermentative pathway of ethanol production in fungi, and in certain plants and bacteria. Immunofluorescence analyses of 8–10-nm filaments, as well as quantitative Northern blot studies of P59Nc mRNA and measurements of PDC activity, showed that the presence and abundance of PDC filaments depends on the metabolic growth conditions of the cells. These findings may be of relevance to the biology of ethanol production by fungi, and may shed light on the nature and variable presence of filament bundles described in fungal cells.  相似文献   
48.
Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.  相似文献   
49.
Fermentation employing Saccharomyces cerevisiae has produced alcoholic beverages and bread for millennia. More recently, S. cerevisiae has been used to manufacture specific metabolites for the food, pharmaceutical, and cosmetic industries. Among the most important of these metabolites are compounds associated with desirable aromas and flavors, including higher alcohols and esters. Although the physiology of yeast has been well-studied, its metabolic modulation leading to aroma production in relevant industrial scenarios such as winemaking is still unclear. Here we ask what are the underlying metabolic mechanisms that explain the conserved and varying behavior of different yeasts regarding aroma formation under enological conditions? We employed dynamic flux balance analysis (dFBA) to answer this key question using the latest genome-scale metabolic model (GEM) of S. cerevisiae. The model revealed several conserved mechanisms among wine yeasts, for example, acetate ester formation is dependent on intracellular metabolic acetyl-CoA/CoA levels, and the formation of ethyl esters facilitates the removal of toxic fatty acids from cells using CoA. Species-specific mechanisms were also found, such as a preference for the shikimate pathway leading to more 2-phenylethanol production in the Opale strain as well as strain behavior varying notably during the carbohydrate accumulation phase and carbohydrate accumulation inducing redox restrictions during a later cell growth phase for strain Uvaferm. In conclusion, our new metabolic model of yeast under enological conditions revealed key metabolic mechanisms in wine yeasts, which will aid future research strategies to optimize their behavior in industrial settings.  相似文献   
50.
【背景】木霉是广泛分布于自然界中的一类真菌,能产生多种酶类和次生代谢产物,具有促进植物生长、提高土壤肥力、拮抗多种土传病原菌等作用。【目的】优化3株植物根际促生真菌(长枝木霉MD30、桔绿木霉JS84及贵州木霉NJAU4742)的固体发酵条件,探究不同发酵条件对木霉产孢量的影响,为木霉菌的生产提供参考。【方法】采用单因素试验和响应面法,对3种木霉在不同发酵条件下的产孢量进行测定并优化,分析了氮源添加、初始pH、物料厚度、接种量、温度等因子对固体发酵的影响。【结果】单因素试验表明,长枝木霉MD30、桔绿木霉JS84与贵州木霉NJAU4742固体发酵时,最佳发酵温度均为28℃、最优木霉菌液接种量均为10%、物料发酵厚度均为3.0 cm,但最佳的初始物料pH与氨基酸水解液添加量有所不同,其中,长枝木霉MD30与贵州木霉NJAU4742发酵最佳的初始pH值为5.0,而桔绿木霉JS84为3.0;长枝木霉MD30与贵州木霉NJAU4742发酵最佳的氨基酸水解液添加量为10%,而桔绿木霉JS84为5%。通过试验分析,确定初始pH、物料厚度、温度为影响产孢量的3个重要因素。响应面分析得到最佳发酵条件:...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号