首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   1篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
In bacteria, 4-nitroquinoline-1-oxide (NQO) causes primarily mutations of the base-substitution type although frameshift mutations are also induced. The adducts formed are presumably recognized by error-prone DNA repair enzymes as evidenced by the much greater activity in plasmid pKM101-bearing tester strains. Although reduction of the nitro group appears to be required for mutagenic activity, this reduction is not catalyzed by the nitroreductase required for the demonstration of the mutagenicity in bacteria of other nitro-containing mutagens (nitrofurans, 2-nitronaphthalene, nitrofluorenes). The reduction of the nitro group appears to be catalyzed by a different nitroreductase. The mutagenicity of the non-carcinogenic 3-methyl-4-nitroquinoline-1-oxide (meNQO) may be related to this newly recognized nitroreductase. It is proposed, further, that the ultimate mutagenic intermediates derived from NQO and MeNQO differ.  相似文献   
2.
Nitropyrenes have been shown to be potent bacterial and mammalian mutagens. However, they failed to induce any recombinogenic activity in Saccharomyces cerevisiae D4 even at elevated concentrations and following extended periods of exposure. A plausible explanation for this lack of activity is the absence or the lack of activation of the enzyme required for the activation of nitropyrenes in this test system under the experimental (aerobic) conditions employed.  相似文献   
3.
4.
β‐Adrenergic signaling regulates many physiological processes in skeletal muscles. A wealth of evidence has shown that β‐agonists can increase skeletal muscle mass in vertebrates. Nevertheless, to date, the specific role of β‐adrenergic receptors in different cell phenotypes (myoblasts, fibroblasts, and myotubes) and during the different steps of embryonic skeletal muscle differentiation has not been studied. Therefore, here we address this question through the analysis of embryonic chick primary cultures of skeletal muscle cells during the formation of multinucleated myotubes. We used isoproterenol (ISO), a β‐adrenergic receptor agonist, to activate the β‐adrenergic signaling and quantified several aspects of muscle differentiation. ISO induced an increase in myoblast proliferation, in the percentage of Pax7‐positive myoblasts and in the size of skeletal muscle fibers, suggesting that ISO activates a hyperplasic and hypertrophic muscle response. Interestingly, treatment with ISO did not alter the number of fibroblast cells, suggesting that ISO effects are specific to muscle cells in the case of chick myogenic cell culture. We also show that rapamycin, an inhibitor of the mammalian target of rapamycin signaling pathway, did not prevent the effects of ISO on chick muscle fiber size. The collection of these results provides new insights into the role of β‐adrenergic signaling during skeletal muscle proliferation and differentiation and specifically in the regulation of skeletal muscle hyperplasia and hypertrophy.  相似文献   
5.
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.  相似文献   
6.
There is a need for safe medications that can effectively support recovery by treating symptoms of protracted abstinence that may precipitate relapse in alcoholics, e.g. craving and disturbances in sleep and mood. This proof-of-concept study reports on the effectiveness of gabapentin 1200 mg for attenuating these symptoms in a non-treatment-seeking sample of cue-reactive, alcohol-dependent individuals. Subjects were 33 paid volunteers with current Diagnostic and Statistical Manual of Mental Disorders-IV alcohol dependence and a strength of craving rating 1 SD or greater for alcohol than water cues. Subjects were randomly assigned to gabapentin or placebo for 1 week and then participated in a within-subjects trial where each was exposed to standardized sets of pleasant, neutral and unpleasant visual stimuli followed by alcohol or water cues. Gabapentin was associated with significantly greater reductions than placebo on several measures of subjective craving for alcohol as well as for affectively evoked craving. Gabapentin was also associated with significant improvement on several measures of sleep quality. Side effects were minimal, and gabapentin effects were not found to resemble any major classes of abused drugs. Results suggest that gabapentin may be effective for treating the protracted abstinence phase in alcohol dependence and that a randomized clinical trial would be an appropriate next step. The study also suggests the value of cue-reactivity studies as proof-of-concept screens for potential antirelapse drugs.  相似文献   
7.
Beta‐secretase 1 (BACE‐1) is an aspartyl protease implicated in the overproduction of β‐amyloid fibrils responsible for Alzheimer disease. The process of β‐amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH‐dependent dynamics of BACE‐1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest β‐amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double‐protonated, mono‐protonated, and double‐deprotonated states over the known pH range of higher activity. These differences include Tyr 71‐aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE‐1 activity.  相似文献   
8.
9.
Actin-based structures play fundamental roles in cellular functions. However it remains controversial how cells cope with the absence of F-actin structures. This report focuses on short- and long-term effects of cytochalasin B (CB) on actin-complexes in fibroblasts and myoblasts. Thirty min of CB treatment dispersed subplasma actin cortices, lamellipodia, ruffled membranes, stress fibers and adhesion plaques into actin patches in fibroblasts and muscle cells. In contrast, 72 hrs CB treatment showed distinct morphological effects. Fibroblasts became giant multinucleated-finger shaped with 5 to 10 protrusions, 3–8 μm in width, and >200 μm in length. They lacked cortical actin, stress fibers, adhesion plaques and ruffled membranes but contained immense lamelliopodia with abnormal adhesion plaque protein complexes. Muscle cells transformed into multinucleated globular-shaped but contained normal I-Z-I and A-bands, indicating that CB did not interfere with the assembly of myofibrils. Within 30 min after CB removal, finger-shaped fibroblasts returned to their original shape and actin-containing structures rapidly reappeared, whereas muscle cells respond slowly to form elongated myotubes following CB washout. The capacity to grow, complete several nuclear cycles, assemble intermediate filaments and microtubules without a morphologically recognizable actin cytoskeleton raises interesting issues related to the role of the actin compartments in eukaryotic cells.  相似文献   
10.
Myogenic differentiation is a multistep process that begins with the commitment of mononucleated precursors that withdraw from cell cycle. These myoblasts elongate while aligning to each other, guided by the recognition between their membranes. This step is followed by cell fusion and the formation of long and striated multinucleated myotubes. We have recently shown that cholesterol depletion by methyl-beta-cyclodextrin (MbetaCD) induces myogenic differentiation by enhancing myoblast recognition and fusion. Here, we further studied the signaling pathways responsible for early steps of myogenesis. As it is known that Wnt plays a role in muscle differentiation, we used the chemical MbetaCD to deplete membrane cholesterol and investigate the involvement of the Wnt/beta-catenin pathway during myogenesis. We show that cholesterol depletion promoted a significant increase in expression of beta-catenin, its nuclear translocation and activation of the Wnt pathway. Moreover, we show that the activation of the Wnt pathway after cholesterol depletion can be inhibited by the soluble protein Frzb-1. Our data suggest that membrane cholesterol is involved in Wnt/beta-catenin signaling in the early steps of myogenic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号