首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13499篇
  免费   592篇
  国内免费   506篇
  2023年   153篇
  2022年   176篇
  2021年   231篇
  2020年   300篇
  2019年   330篇
  2018年   345篇
  2017年   294篇
  2016年   285篇
  2015年   296篇
  2014年   534篇
  2013年   915篇
  2012年   370篇
  2011年   541篇
  2010年   370篇
  2009年   538篇
  2008年   562篇
  2007年   681篇
  2006年   554篇
  2005年   472篇
  2004年   425篇
  2003年   449篇
  2002年   427篇
  2001年   358篇
  2000年   304篇
  1999年   301篇
  1998年   306篇
  1997年   295篇
  1996年   255篇
  1995年   310篇
  1994年   295篇
  1993年   258篇
  1992年   259篇
  1991年   185篇
  1990年   166篇
  1989年   171篇
  1988年   121篇
  1987年   133篇
  1986年   91篇
  1985年   213篇
  1984年   215篇
  1983年   132篇
  1982年   153篇
  1981年   140篇
  1980年   130篇
  1979年   92篇
  1978年   78篇
  1977年   86篇
  1976年   89篇
  1975年   61篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 542 毫秒
991.
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.  相似文献   
992.
Lactation is a highly demanding event in mammals, including buffaloes. It modulates the partitioning of nutrients, energy utilization, and food intake of the mother to meet her own and infant's energy needs. Failure to satisfy these energy needs leads to Negative Energy Balance (NEB). Currently, the only available indirect NEB indicator is Body Condition Score (BCS). However, direct dependency of the BCS on the peak depletion of body fat causes its inefficient use in a dairy farm. Thus, to establish objective NEB indicators in buffaloes, the serum levels of biochemical (serum β-hydroxybutyrate [BHBA] and free fatty acids [FFAs]), and endocrine (Growth Hormone [GH], insulin-like growth factor1 [IGF1], Insulin, and leptin) parameters were estimated in buffaloes. Our results revealed that serum FFA levels were significantly (p < 0.05) higher in high milk yielders (HMY) than low milk yielders (LMY) and heifers (H) during the 3rd and the 4th weeks of postpartum. The serum FFA levels were also significantly (p < 0.001) higher in the postpartum buffaloes with BCS < 3 in the field conditions. Further, serum leptin levels were significantly (p < 0.05) lower in HMY than LMY during the 3rd week of postpartum. However, the BHBA, GH, IGF1, and insulin levels were not significantly different between lactating buffaloes and H. These observations indicated that the NEB condition is probably restricted to the first month of early lactation in buffaloes. In conclusion, the simultaneous higher FFA and lower leptin levels could act as direct plausible metabolic indicators of NEB in buffaloes.  相似文献   
993.
【目的】构建一株含3A非结构蛋白104–115位氨基酸缺失的口蹄疫A型标记病毒,分析其生物学特性和发展标记疫苗的潜力。【方法】采用融合PCR技术,在当前流行毒株A/Sea-97/CHA/2014全长感染性克隆p QAHN中引入3A104–115位氨基酸的缺失,构建全长重组质粒。全长质粒经NotI线化后转染表达T7RNA聚合酶的稳定细胞系,拯救标记病毒。RT-PCR、序列分析、间接免疫荧光和Western blotting鉴定标记病毒。噬斑表型和一步生长曲线分析标记病毒的生物学特性,并用实验室开发的针对3A优势表位(AEKNPLE)的阻断ELISA方法分析其区分亲本和标记病毒感染的动物。【结果】成功拯救到一株含3A 104–115位氨基酸缺失的口蹄疫A型标记病毒,3A表位的缺失没有影响标记病毒的噬斑表型和一步生长曲线。3A单抗阻断ELISA可以明显区分标记病毒和亲本病毒感染的动物。【结论】本研究构建的3A蛋白104–115位氨基酸缺失的标记病毒可以作为发展口蹄疫鉴别诊断疫苗的候选毒株,用于我国未来口蹄疫A型的有效防控。  相似文献   
994.
995.
Reconstituted nicotinic acetylcholine receptors (nAChRs) exhibit significant gain-of-function upon addition of cholesterol to reconstitution mixtures, and cholesterol affects the organization of nAChRs within domain-forming membranes, but whether nAChR partitions to cholesterol-rich liquid-ordered (“raft” or lo) domains or cholesterol-poor liquid-disordered (ldo) domains is unknown. We use coarse-grained molecular dynamics simulations to observe spontaneous interactions of cholesterol, saturated lipids, and polyunsaturated (PUFA) lipids with nAChRs. In binary Dipalmitoylphosphatidylcholine:Cholesterol (DPPC:CHOL) mixtures, both CHOL and DPPC acyl chains were observed spontaneously entering deep “non-annular” cavities in the nAChR TMD, particularly at the subunit interface and the β subunit center, facilitated by the low amino acid density in the cryo-EM structure of nAChR in a native membrane. Cholesterol was highly enriched in the annulus around the TMD, but this effect extended over (at most) 5–10 Å. In domain-forming ternary mixtures containing PUFAs, the presence of a single receptor did not significantly affect the likelihood of domain formation. nAChR partitioned to any cholesterol-poor ldo domain that was present, regardless of whether the ldo or lo domain lipids had PC or PE headgroups. Enrichment of PUFAs among boundary lipids was positively correlated with their propensity for demixing from cholesterol-rich phases. Long n-3 chains (tested here with Docosahexaenoic Acid, DHA) were highly enriched in annular and non-annular embedded sites, partially displacing cholesterol and completely displacing DPPC, and occupying sites even deeper within the bundle. Shorter n-6 chains were far less effective at displacing cholesterol from non-annular sites.  相似文献   
996.
The cyclic lipopeptide fengycin, produced by Bacillus subtilis, exhibits its antimicrobial capabilities by altering the integrity of the cell membrane of plant pathogens. Previous work has correlated fengycin activity with membrane characteristics, such as sterol content. This work focused on the influence of fengycin on supported lipid bilayers containing varying levels of ergosterol. Total internal reflection fluorescence (TIRF) microscopy was used to visualize and distinguish ordered (Lβ/Lo) and disordered (Lα/Ld) domains in the model membranes following exposure to low (50 μg) and high (500 μg) fengycin doses. Application of an initial low dose of fengycin to 0% and 3% ergosterol-containing bilayers resulted in redistribution of Lα/Lβ and Lo/Ld domains, respectively, which the bilayers compensated and corrected for over time. These membranes were unable to tolerate a second 50 μg dose or a single high fengycin dose. The 6% ergosterol bilayers were able to tolerate sequential low doses of fengycin. Exposure of these bilayers to the high fengycin dose caused a decrease in the number of Lo domains, albeit less than that seen in the 0% and 3% ergosterol bilayers. Bilayers containing 12% ergosterol, exhibited the least amount of change after fengycin exposure. These were the only bilayer to exhibit an increase in area taken up by ordered domains. These results suggest fengycin may preferentially act on the Lβ or Lo phase, the area in which ergosterol resides. Bilayers containing low levels of ergosterol appear to be more sensitive to the lipopeptide, suggesting ergosterol plays a role in buffering perturbations caused by fengycin.  相似文献   
997.
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号