首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2101篇
  免费   220篇
  国内免费   138篇
  2024年   8篇
  2023年   49篇
  2022年   44篇
  2021年   76篇
  2020年   92篇
  2019年   114篇
  2018年   120篇
  2017年   115篇
  2016年   101篇
  2015年   119篇
  2014年   116篇
  2013年   191篇
  2012年   87篇
  2011年   105篇
  2010年   98篇
  2009年   99篇
  2008年   103篇
  2007年   127篇
  2006年   84篇
  2005年   86篇
  2004年   50篇
  2003年   49篇
  2002年   48篇
  2001年   43篇
  2000年   23篇
  1999年   36篇
  1998年   41篇
  1997年   37篇
  1996年   15篇
  1995年   17篇
  1994年   17篇
  1993年   24篇
  1992年   21篇
  1991年   15篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   14篇
  1985年   9篇
  1984年   7篇
  1983年   5篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有2459条查询结果,搜索用时 28 毫秒
191.
Biomass productivity is the main favorable trait of candidate bioenergy crops. Miscanthus × giganteus is a promising species, due to its high‐yield potential and positive traits including low nutrient requirements and potential for C sequestration in soils. However, miscanthus productivity appears to be mostly related to water availability in the soil. This is important, particularly in Mediterranean regions where the risk of summer droughts is high. To date, there have been no studies on miscanthus responses under different soil conditions, while only a few have investigated the role of different crop managements, such as irrigation and nitrogen fertilization, in the Mediterranean. Therefore, the effects of contrasting soil textures (i.e. silty‐clay‐loam vs. sandy‐loam) and alternative agricultural intensification regimes (i.e. rainfed vs. irrigated and 0, 50, 100 kg ha?1 nitrogen fertilization), on miscanthus productivity were evaluated at three different harvest times for two consecutive years. Our results confirmed the importance of water availability in determining satisfactory yields in Mediterranean environments, and how soil and site characteristics strongly affect biomass production. We found that the aboveground dry yields varied between 5 Mg ha?1 up to 29 Mg ha?1. Conversely, nitrogen fertilization played only a minor role on crop productivity, and high fertilization levels were relatively inefficient. Finally, a marked decrease, of up to ?40%, in the aboveground yield occurred when the harvest time was delayed from autumn to winter. Overall, our results highlighted the importance of determining crop responses on a site‐by‐site basis, and that decisions on the optimal harvest time should be driven by the biomass end use and other long‐term considerations, such as yield stability and the maintenance of soil fertility.  相似文献   
192.
Harvesting branches, stumps and unmercantable tops, in addition to stem wood, decreases the carbon input to the soil and consequently reduces the forest carbon stock. We examine the changes in the forest carbon cycle that would compensate for this carbon loss over a rotation period and lead to carbon neutral forest residue bioenergy systems. In addition, we analyse the potential climate impact of these carbon neutral systems. In a boreal forest, the carbon loss was compensated for with a 10% increase in tree growth or a postponing of final felling for 20 years from 90 to 110 years in one forest rotation period. However, these changes in carbon sequestration did not prevent soil carbon loss. To recover soil carbon stock, a 38% increase in tree growth or a 21% decrease in the decomposition rate of the remaining organic matter was needed. All the forest residue bioenergy scenarios studied had a warming impact on climate for at least 62 years. Nevertheless, the increases in the carbon sequestration from forest growth or reduction in the decomposition rate of the remaining organic matter resulted in a 50% smaller warming impact of forest bioenergy use or even a cooling climate impact in the long term. The study shows that carbon neutral forest residue bioenergy systems have warming climate impacts. Minimization of the forest carbon loss improves the climate impact of forest bioenergy.  相似文献   
193.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   
194.
The use of crop residues for bioenergy production needs to be carefully assessed because of the potential negative impact on the level of soil organic carbon (SOC) stocks. The impact varies with environmental conditions and crop management practices and needs to be considered when harvesting the residue for bioenergy productions. Here, we defined the sustainable harvest limits as the maximum rates that do not diminish SOC and quantified sustainable harvest limits for wheat residue across Australia's agricultural lands. We divided the study area into 9432 climate‐soil (CS) units and simulated the dynamics of SOC in a continuous wheat cropping system over 122 years (1889 – 2010) using the Agricultural Production Systems sIMulator (APSIM). We simulated management practices including six fertilization rates (0, 25, 50, 75, 100, and 200 kg N ha?1) and five residue harvest rates (0, 25, 50, 75, and 100%). We mapped the sustainable limits for each fertilization rate and assessed the effects of fertilization and three key environmental variables – initial SOC, temperature, and precipitation – on sustainable residue harvest rates. We found that, with up to 75 kg N ha?1 fertilization, up to 75% and 50% of crop residue could be sustainably harvested in south‐western and south‐eastern Australia, respectively. Higher fertilization rates achieved little further increase in sustainable residue harvest rates. Sustainable residue harvest rates were principally determined by climate and soil conditions, especially the initial SOC content and temperature. We conclude that environmental conditions and management practices should be considered to guide the harvest of crop residue for bioenergy production and thereby reduce greenhouse gas emissions during the life cycle of bioenergy production.  相似文献   
195.
The expected use of solid biomass for large-scale heat and power production across North–West Europe (NW EU) has led to discussions about its sustainability, especially due to the increasing import dependence of the sector. While individual Member States and companies have put forward sustainability criteria, it remains unclear how different requirements will influence the availability and cost of solid biomass and thus how specific regions will satisfy their demand in a competitive global market. We combined a geospatially explicit least-cost biomass supply model with a linear optimization solver to assess global solid biomass trade streams by 2020 with a particular focus on NW EU. We apply different demand and supply scenarios representing varying policy developments and sustainability requirements. We find that the projected EU solid biomass demand by 2020 can be met across all scenarios, almost exclusively via domestic biomass. The exploitation of domestic agricultural residue and energy crop potentials, however, will need to increase sharply. Given sustainability requirements for solid biomass as for liquid biofuels, extra-EU imports may reach 236 PJ by 2020, i.e., 400% of their 2010 levels. Intra-EU trade is expected to grow with stricter sustainability requirements up to 548 PJ, i.e., 280% of its 2010 levels by 2020. Increasing sustainability requirements can have different effects on trade portfolios across NW EU. Excluding pulpwood pellets may drive the supply costs of import dependent countries, foremost the Netherlands and the UK, whereas excluding additional forest biomass may entail higher costs for Germany and Denmark which rely on regional biomass. Excluding solid biomass fractions may create short-term price hikes. Our modeling results are strongly influenced by parameterization choices, foremost assumed EU biomass supply volumes and costs and assumed relations between criteria and supply. The model framework is suited for the inclusion of dynamic supply–demand interactions and other world regions.  相似文献   
196.
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.  相似文献   
197.
Assessing spatial variation in waterfowl harvest probabilities from banding data is challenging because reporting and recovery probabilities have distinct spatial patterns that covary temporally with harvesting regulations, hunter effort, and reporting methods. We analyzed direct band recovery data from American black ducks banded on the Canadian breeding grounds from 1970 through 2010. Data were registered to a 1‐degree grid and analyzed using hierarchical logistic regression models with spatially correlated errors to estimate the annual probabilities of band recovery and the proportion of individuals recovered in Canada. Probability of harvest was estimated from these values, in combination with independent estimates of reporting probabilities in Canada and the USA. Model covariates included estimates of hunting effort and factors for harvest regulation and band reporting methods. Both the band recovery processes and the proportion of individuals recovered in Canada had significant spatial structure. Recovery probabilities were highest in southern Ontario, along the Saint Lawrence River in Quebec, and in Nova Scotia. Black ducks breeding in Nova Scotia and southern Quebec were harvested predominantly in Canada. Recovery probabilities for juveniles were correlated with hunter effort, while the adult recoveries were weakly correlated with the implementation of stricter harvest regulations in the early 1980s. Mean harvest probability decreased in the northern portion of the survey area but remained stable or even increased in the south. Harvest probabilities for juveniles in 2010 exceeded 20% in southern Quebec and the Atlantic provinces. Our results demonstrate fine‐scale variation in harvest probabilities for black duck on the Canadian breeding ground. In particular, harvest probabilities should be closely monitored along the Saint Lawrence River system and in the Atlantic provinces to avoid overexploitation.  相似文献   
198.
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号